Abstract:
Provided are a family of node structures, representing 3-dimensional objects using depth image, adoptable into MPEG-4 AFx for polygonal 3D representations. Family formats include DepthImage, PointTexture, and OctreeImage. DepthImage represents an object through union of its reference images and corresponding depth maps. PointTexture represents the object as a set of colored points parameterized by projection onto a 2D grid. OctreeImage converts same data into hierarchical octree-structured voxel model, set of compact reference images, and a tree of voxel-image correspondence indices. DepthImage and OctreeImage have animated versions, where reference images are replaced by videostreams. DIBR formats are convenient for 3D model construction from 3D range-scanning and multiple source video data. MPEG-4 framework allows construction of a variety of representations from the DIBR formats, providing flexible tools for effective 3D models work. DIBR format compression is achieved by application of image (video) compression techniques to depth maps and reference images (videostreams).
Abstract:
A family of node structures for representing 3-dimensional objects using depth image are provided. These node structures can be adopted into MPEG-4 AFX for conventional polygonal 3D representations. Main formats of the family are DepthImage, PointTexture and OctreeImage. DepthImage represents an object by a union of its reference images and corresponding depth maps. PointTexture represents the object as a set of colored points parameterized by projection onto a regular 2D grid. OctreeImage converts the same data into hierarchical octree-structured voxel model, set of compact reference images and a tree of voxel-image correspondence indices. DepthImage and OctreeImage have animated versions, where reference images are replaced by videostreams. DIBR formats are very convenient for 3D model construction from 3D range-scanning and multiple source video data. MPEG-4 framework allows construction of a wide variety of representations from the main DIBR formats, providing flexible tools for effective work with 3D models. Compression of the DIBR formats is achieved by application of image (video) compression techniques to depth maps and reference images (videostreams).
Abstract:
An apparatus and a method for encoding and decoding key data are provided. An apparatus for encoding DPCMed differential data of key data includes a DND operator which performs on input differential data a predetermined number of times a DND operation, in which a divide operation is performed on the input differential data so as to divide differential data belonging to a positive number region into halves and so as to convert one half of the differential data belonging to an upper range than the other half into negative values, and either a divide-up operation or a divide-down operation is selectively performed on the results of the divide operation depending on the range of the results of the divide operation so as to reduce the range of differential data belonging to a negative number region or the positive number region, respectively, a shift-up operator which performs a shift-up operation on the results of the DND operation so as to transfer the differential data having been through the DND operation to either the positive or negative number region, a differential data selector which selectively outputs either the differential data having been through the DND operation or the differential data having been through the shift-up operation, and an entropy encoder which entropy-encodes the differential data selected by the differential data selector.
Abstract:
An apparatus and a method for encoding and decoding key data are provided. An apparatus for encoding DPCMed differential data of key data includes a DND operator which performs on input differential data a predetermined number of times a DND operation, in which a divide operation is performed on the input differential data so as to divide differential data belonging to a positive number region into halves and so as to convert one half of the differential data belonging to an upper range than the other half into negative values, and either a divide-up operation or a divide-down operation is selectively performed on the results of the divide operation depending on the range of the results of the divide operation so as to reduce the range of differential data belonging to a negative number region or the positive number region, respectively, a shift-up operator which performs a shift-up operation on the results of the DND operation so as to transfer the differential data having been through the DND operation to either the positive or negative number region, a differential data selector which selectively outputs either the differential data having been through the DND operation or the differential data having been through the shift-up operation, and an entropy encoder which entropy-encodes the differential data selected by the differential data selector.
Abstract:
A method for processing nodes in 3-dimensional (3D) scene and an apparatus thereof are provided. The method includes the steps of identifying a 3D mesh node having 3D mesh information representing a 3D shape which is formed by constructing faces from vertices among nodes contained in a 3D scene to be processed; and encoding or decoding the identified 3D mesh node. Also, the method includes the step of transmitting or storing the 3D mesh information of the encoded 3D mesh node through an independent stream separate from the 3D scene description stream. According to the method, a node representing 3D mesh information having a huge volume of information in a 3D scene can be efficiently encoded and decoded so that the 3D scene can be efficiently transmitted and stored. By transmitting and storing 3D mesh information of a node representing encoded 3D mesh information, through an independent stream separate from 3D scene description information, the entire 3D scene cannot be affected even though encoded 3D mesh information has a huge volume.
Abstract:
A graphic data encoding method and apparatus generating a bitstream by encoding a header having at least one piece of first information determined in consideration of a predetermined graphic profile from among multiple pieces of encodable first information; and encoding a payload having at least one piece of second information determined in consideration of the predetermined graphic profile from among multiple pieces of encodable second information. A graphic data decoding method and apparatus decode the generated bitstream. Irrespective of the functions that can be performed by the graphic data encoding apparatus and the functions that can be performed by the graphic data decoding apparatus, the graphic data decoding apparatus, which is in accordance with a graphic profile, can completely restore a 3D mesh model described in the bitstream generated by the graphic data encoding apparatus that is satisfactory to the graphic profile.
Abstract:
A method and an apparatus for encoding/decoding key value data of a coordinate interpolator used in a three-dimensional graphic animation are provided. The apparatus for encoding key value data of a coordinate interpolator representing the position of each vertex of an object using coordinates of each of the vertices including x, y, and z components includes a quantizer, which quantizes a coordinate interpolator input thereinto with predetermined quantization bits, a DPCM processor, which performs a DPCM operation of a predetermined mode on each component of each vertex of the quantized coordinate interpolator and thus generates differential data based on the temporal variation of the coordinates of each of the vertices and differential data based on the spatial variation of the coordinates of each of the vertices, a dictionary encoder, which generates symbols representing the differential data of each of the components of each of the vertices and the mode of a DPCM operation which has been performed on the differential data and position indexes indicating the positions of the symbols, and an entropy encoder, which entropy-encodes the symbols and the position indexes.
Abstract:
An apparatus for encoding and decoding key data and key value data of a coordinate interpolator and a recording medium, on which a bitstream, into which a coordinate interpolator is encoded, is written, are provided. The bitstream includes key data encoding/decoding information, into which key data and information necessary to decode the key data are encoded, and key value data encoding/decoding information, into which key value data and information necessary to decode the key value data are encoded. The key data encoding/decoding information includes inverse DND operation information including the order of inverse DND indicating a predetermined number of cycles of inverse DND to be performed on differential data generated by entropy-decoding the bitstream in order to extend the range of the differential data.
Abstract:
A method and an apparatus for encoding and decoding an orientation interpolator indicating the locations of keyframes on a temporal axis and the rotation of an object in each of the keyframes are provided. The apparatus for encoding an orientation interpolator includes an break point extractor which extracts, from a first animation path constituted by an orientation interpolator input thereinto, a minimum number of break points, which can bring about an error of no greater than a predetermined error limit between the first animation path and a second animation to be generated by the extracted break points, a key data encoder which encodes key data input from the break point extractor, and a key value data encoder which encodes key value data input from the break point extractor by generating rotational differential data, by which the object is rotationally transformed by as much as a difference between a rotational transformation value of a current keyframe and a rotational transformation value of a previous keyframe.
Abstract:
A method and an apparatus for encoding key value data of an orientation interpolator representing the rotation of an object in a keyframe image are provided. The apparatus includes a rotational differential data generator which generates, using a rotational transformation value of a current keyframe and a restored rotational transformation value of a previous keyframe, a rotational differential value used to rotate the object by as much as a difference between rotational transformation applied to the object in the current keyframe by key value data and rotational transformation applied to the object in the previous keyframe by key value data, and outputs rotational differential data by quantizing the rotational differential value, a circular DPCM operator which selectively performs a linear DPCM operation or a circular DPCM operation on rotational differential data, and an entropy encoder which entropy-encodes the rotational differential data.