摘要:
A system and method for transmit signal pulse shaping in automotive applications. Automotive vehicle manufacturers that incorporate electronic components into an automotive vehicle must consider emission requirements masks that can be dependent on particular geographic markets as well as the other electronic components contained within a particular automotive vehicle design. A physical layer device is provided that can be configured to operate in multiple emissions configurations using configurable parameters specified for the modulation and wave shaping modules.
摘要:
A system and method for dynamic power control for energy efficient physical layer communication devices. Energy-efficiency features are continually being developed to conserve energy in links between such energy-efficient devices. These energy-efficient devices interoperate with many legacy devices that have already been deployed. In these links, energy savings can be produced by having a local receiver enter an energy saving state based upon the receipt of standard IDLE signals.
摘要:
An Ethernet PHY may receive an indication from a local timing source that a local clock is suitable for propagation to a link partner. In response, a timer in the Ethernet PHY may be started. In instances that the Ethernet PHY receives, during a time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, the Ethernet PHY may be configured as timing slave. In instances that the Ethernet PHY does not receive, during the time period subsequent to starting the timer and before the timer reaches a predetermined value, an indication that the link partner is propagating a clock that is suitable for the Ethernet PHY to synchronize to, Ethernet PHY may be configured as timing master upon the timer reaching the predetermined value.
摘要:
A system and method for dynamic power control for energy efficient physical layer communication devices. Energy-efficiency features are continually being developed to conserve energy in links between such energy-efficient devices. These energy-efficient devices interoperate with many legacy devices that have already been deployed. In these links, energy savings can be produced by having a local receiver enter an energy saving state based upon the receipt of standard IDLE signals.