Extended Isomap using Fisher Linear Discriminant and Kernel Fisher Linear Discriminant
    21.
    发明授权
    Extended Isomap using Fisher Linear Discriminant and Kernel Fisher Linear Discriminant 失效
    使用Fisher线性判别和内核Fisher线性判别的扩展Isomap

    公开(公告)号:US07379602B2

    公开(公告)日:2008-05-27

    申请号:US10621872

    申请日:2003-07-16

    申请人: Ming-Hsuan Yang

    发明人: Ming-Hsuan Yang

    CPC分类号: G06K9/6252 G06K9/6234

    摘要: A method for representing images for pattern classification extends the conventional Isomap method with Fisher Linear Discriminant (FLD) or Kernel Fisher Linear Discriminant (KFLD) for classification. The extended Isomap method estimates the geodesic distance of data points corresponding to images for pattern classification, and uses pairwise geodesic distances as feature vectors. The method applies FLD to the feature vectors to find an optimal projection direction to maximize the distances between cluster centers of the feature vectors. The method may apply KFLD to the feature vectors instead of FLD.

    摘要翻译: 用于表示图案分类的图像的方法扩展了用于分类的具有Fisher线性判别(FLD)或内核Fisher线性判别(KFLD)的常规Isomap方法。 扩展的Isomap方法估计与图像分类对应的数据点的测地距离,并使用成对测地距离作为特征向量。 该方法将FLD应用于特征向量以找到最佳投影方向,以最大化特征向量的聚类中心之间的距离。 该方法可以将KFLD应用于特征向量而不是FLD。

    Method, apparatus and program for detecting an object
    22.
    发明授权
    Method, apparatus and program for detecting an object 有权
    用于检测物体的方法,装置和程序

    公开(公告)号:US07224831B2

    公开(公告)日:2007-05-29

    申请号:US10858878

    申请日:2004-06-01

    IPC分类号: G06K9/36

    CPC分类号: G06K9/00201

    摘要: The advantage of the present invention is to appropriately detect the object. The object detection apparatus in the present invention has a plurality of cameras to determine the distance to the objects, a distance determination unit to determine the distance therein, a histogram generation unit to specify the frequency of the pixels against the distances to the pixels, an object distance determination unit that determines the most likely distance, a probability mapping unit that provides the probabilities of the pixels based on the difference of the distance, a kernel detection unit that determines a kernel region as a group of the pixels, a periphery detection unit that determines a peripheral region as a group of the pixels, selected from the pixels being close to the kernel region and an object specifying unit that specifies the object region where the object is present with a predetermined probability.

    摘要翻译: 本发明的优点是适当地检测物体。 本发明的物体检测装置具有多个照相机,用于确定与物体的距离,距离确定单元,用于确定其中的距离;直方图生成单元,用于根据与像素的距离来指定像素的频率; 确定最可能的距离的对象距离确定单元,基于距离差提供像素概率的概率映射单元,将核区域确定为像素组的内核检测单元,周边检测单元 将外围区域确定为从接近核心区域的像素中选择的像素组,以及以预定概率指定对象存在的对象区域的对象指定单元。

    Face recognition using kernel fisherfaces
    23.
    发明授权
    Face recognition using kernel fisherfaces 有权
    使用内核渔船进行脸部识别

    公开(公告)号:US07054468B2

    公开(公告)日:2006-05-30

    申请号:US10201429

    申请日:2002-07-22

    申请人: Ming-Hsuan Yang

    发明人: Ming-Hsuan Yang

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00275

    摘要: A face recognition system and method project an input face image and a set of reference face images from an input space to a high dimensional feature space in order to obtain more representative features of the face images. The Kernel Fisherfaces of the input face image and the reference face images are calculated, and are used to project the input face image and the reference face images to a face image space lower in dimension than the input space and the high dimensional feature space. The input face image and the reference face images are represented as points in the face image space, and the distance between the input face point and each of the reference image points are used to determine whether or not the input face image resembles a particular face image of the reference face images.

    摘要翻译: 面部识别系统和方法将输入面部图像和一组参考面部图像从输入空间投影到高维特征空间,以便获得面部图像的更具代表性的特征。 计算输入面部图像和参考面部图像的内容面积,并将输入面部图像和参考面部图像投影到尺寸小于输入空间和高维特征空间的面部图像空间。 输入面部图像和参考面部图像被表示为面部图像空间中的点,并且使用输入面部点与每个参考图像点之间的距离来确定输入面部图像是否类似于特定面部图像 的参考面部图像。

    Adaptive probabilistic visual tracking with incremental subspace update
    24.
    发明申请
    Adaptive probabilistic visual tracking with incremental subspace update 有权
    具有增量子空间更新的自适应概率视觉跟踪

    公开(公告)号:US20050175219A1

    公开(公告)日:2005-08-11

    申请号:US10989966

    申请日:2004-11-15

    IPC分类号: G06K9/00 G06K9/46 G06T7/20

    摘要: A system and a method are disclosed for adaptive probabilistic tracking of an object within a motion video. The method utilizes a time-varying Eigenbasis and dynamic, observation and inference models. The Eigenbasis serves as a model of the target object. The dynamic model represents the motion of the object and defines possible locations of the target based upon previous locations. The observation model provides a measure of the distance of an observation of the object relative to the current Eigenbasis. The inference model predicts the most likely location of the object based upon past and present observations. The method is effective with or without training samples. A computer-based system provides a means for implementing the method. The effectiveness of the system and method are demonstrated through simulation.

    摘要翻译: 公开了用于运动视频内的对象的自适应概率跟踪的系统和方法。 该方法利用时变特征向量和动态,观察和推理模型。 Eigenbasis作为目标对象的模型。 动态模型表示对象的运动,并根据先前的位置定义目标的可能位置。 观察模型提供了对象相对于当前Eigenbasis的观察距离的度量。 推论模型基于过去和现在的观察预测对象的最可能的位置。 该方法在有或没有训练样本的情况下是有效的。 基于计算机的系统提供了实现该方法的手段。 通过仿真证明了系统和方法的有效性。

    Online sparse matrix Gaussian process regression and visual applications
    25.
    发明授权
    Online sparse matrix Gaussian process regression and visual applications 有权
    在线稀疏矩阵高斯过程回归和视觉应用

    公开(公告)号:US08190549B2

    公开(公告)日:2012-05-29

    申请号:US12276128

    申请日:2008-11-21

    IPC分类号: G06F17/00 G06N5/02

    摘要: An online sparse matrix Gaussian process (OSMGP) uses online updates to provide an accurate and efficient regression for applications such as pose estimation and object tracking. A regression calculation module calculates a regression on a sequence of input images to generate output predictions based on a learned regression model. The regression model is efficiently updated by representing a covariance matrix of the regression model using a sparse matrix factor (e.g., a Cholesky factor). The sparse matrix factor is maintained and updated in real-time based on the output predictions. Hyperparameter optimization, variable reordering, and matrix downdating techniques can also be applied to further improve the accuracy and/or efficiency of the regression process.

    摘要翻译: 在线稀疏矩阵高斯过程(OSMGP)使用在线更新来为姿态估计和对象跟踪等应用程序提供准确有效的回归。 回归计算模块根据学习的回归模型计算输入图像序列的回归以产生输出预测。 通过使用稀疏矩阵因子(例如,Cholesky因子)表示回归模型的协方差矩阵来有效地更新回归模型。 基于输出预测,稀疏矩阵因子实时维护和更新。 超参数优化,可变重排序和矩阵减法技术也可以应用于进一步提高回归过程的准确性和/或效率。

    Fast human pose estimation using appearance and motion via multi-dimensional boosting regression
    26.
    发明授权
    Fast human pose estimation using appearance and motion via multi-dimensional boosting regression 有权
    通过多维加速回归,使用外观和运动的快速人体姿态估计

    公开(公告)号:US07778446B2

    公开(公告)日:2010-08-17

    申请号:US11950662

    申请日:2007-12-05

    IPC分类号: G06K9/00

    CPC分类号: G06K9/00342 G06K9/6257

    摘要: Methods and systems are described for three-dimensional pose estimation. A training module determines a mapping function between a training image sequence and pose representations of a subject in the training image sequence. The training image sequence is represented by a set of appearance and motion patches. A set of filters are applied to the appearance and motion patches to extract features of the training images. Based on the extracted features, the training module learns a multidimensional mapping function that maps the motion and appearance patches to the pose representations of the subject. A testing module outputs a fast human pose estimation by applying the learned mapping function to a test image sequence.

    摘要翻译: 描述了用于三维姿态估计的方法和系统。 训练模块确定训练图像序列和训练图像序列中的对象的姿态表示之间的映射函数。 训练图像序列由一组外观和运动补丁表示。 将一组滤镜应用于外观和运动补片以提取训练图像的特征。 基于提取的特征,训练模块学习将运动和外观补片映射到对象的姿态表示的多维映射函数。 测试模块通过将学习的映射函数应用于测试图像序列来输出快速人体姿态估计。

    Discriminative motion modeling for human motion tracking
    27.
    发明授权
    Discriminative motion modeling for human motion tracking 失效
    人体运动跟踪的辨别运动建模

    公开(公告)号:US07728839B2

    公开(公告)日:2010-06-01

    申请号:US11553374

    申请日:2006-10-26

    IPC分类号: G06T7/20

    摘要: A system and method recognizes and tracks human motion from different motion classes. In a learning stage, a discriminative model is learned to project motion data from a high dimensional space to a low dimensional space while enforcing discriminance between motions of different motion classes in the low dimensional space. Additionally, low dimensional data may be clustered into motion segments and motion dynamics learned for each motion segment. In a tracking stage, a representation of human motion is received comprising at least one class of motion. The tracker recognizes and tracks the motion based on the learned discriminative model and the learned dynamics.

    摘要翻译: 系统和方法识别和跟踪来自不同运动类别的人运动。 在学习阶段,学习将辨别模型从高维空间投影到低维空间,同时在低维空间中执行不同运动类别运动之间的鉴别。 此外,低维数据可以被聚集成运动段并且为每个运动段学习运动动力学。 在跟踪阶段,接收包括至少一类运动的人体运动的表示。 跟踪者基于学习的歧视模型和学习的动态来识别和跟踪动作。

    Direct method for modeling non-rigid motion with thin plate spline transformation
    28.
    发明授权
    Direct method for modeling non-rigid motion with thin plate spline transformation 有权
    用薄板样条变换建立非刚性运动的直接方法

    公开(公告)号:US07623731B2

    公开(公告)日:2009-11-24

    申请号:US11450045

    申请日:2006-06-09

    IPC分类号: G06K9/36

    CPC分类号: G06T7/20 G06K9/6206

    摘要: A system and a method model the motion of a non-rigid object using a thin plate spline (TPS) transform. A first image of a video sequence is received, and a region of interest, referred to as a template, is chosen manually or automatically. A set of arbitrarily-chosen fixed reference points is positioned on the template. A target image of the video sequence is chosen for motion estimation relative to the template. A set of pixels in the target image corresponding to the pixels of the template is determined, and this set of pixels is back-warped to match the template using a thin-plate-spline-based technique. The error between the template and the back-warped image is determined and iteratively minimized using a gradient descent technique. The TPS parameters can then be used to estimate the relative motion between the template and the corresponding region of the target image. According to one embodiment, a stiff-to-flexible approach mitigates instability that can arise when reference points lie in textureless regions, or when the initial TPS parameters are not close to the desired ones. The value of a regularization parameter is varied from a larger to a smaller value, varying the nature of the warp from stiff to flexible, so as to progressively emphasize local non-rigid deformations.

    摘要翻译: 一种使用薄板样条(TPS)变换建立非刚性物体的运动的系统和方法。 接收视频序列的第一图像,并且手动地或自动地选择被称为模板的感兴趣区域。 一组任意选择的固定参考点位于模板上。 选择视频序列的目标图像用于相对于模板的运动估计。 确定与模板的像素相对应的目标图像中的一组像素,并且使用基于薄板样条的技术来使该组像素逆向匹配模板。 使用梯度下降技术确定模板和反翘曲图像之间的误差并迭代地最小化。 然后可以使用TPS参数来估计模板和目标图像的对应区域之间的相对运动。 根据一个实施例,柔性到柔性的方法减轻了当参考点位于无纹理区域时或者当初始TPS参数不接近期望的区域时可能出现的不稳定性。 正则化参数的值从较大值变化到较小值,将翘曲的性质从刚性变化到柔性,从而逐渐强调局部非刚性变形。

    Online Articulate Object Tracking With Appearance And Shape
    29.
    发明申请
    Online Articulate Object Tracking With Appearance And Shape 有权
    具有外观和形状的在线铰链对象跟踪

    公开(公告)号:US20090226037A1

    公开(公告)日:2009-09-10

    申请号:US12339029

    申请日:2008-12-18

    IPC分类号: G06K9/00

    摘要: A visual tracker tracks an object in a sequence of input images. A tracking module detects a location of the object based on a set of weighted blocks representing the object's shape. The tracking module then refines a segmentation of the object from the background image at the detected location. Based on the refined segmentation, the set of weighted blocks are updated. By adaptively encoding appearance and shape into the block configuration, the present invention is able to efficiently and accurately track an object even in the presence of rapid motion that causes large variations in appearance and shape of the object.

    摘要翻译: 视觉跟踪器以输入图像序列跟踪对象。 跟踪模块基于表示对象形状的一组加权块检测对象的位置。 跟踪模块然后在检测到的位置处从背景图像中精细地分割对象。 基于精细分割,更新加权块集合。 通过将外观和形状自适应地编码成块结构,本发明能够即使在存在引起物体的外观和形状的大的变化的快速运动的情况下也能有效且准确地跟踪物体。

    Online Sparse Matrix Gaussian Process Regression And Visual Applications
    30.
    发明申请
    Online Sparse Matrix Gaussian Process Regression And Visual Applications 有权
    在线稀疏矩阵高斯过程回归和视觉应用

    公开(公告)号:US20090164405A1

    公开(公告)日:2009-06-25

    申请号:US12276128

    申请日:2008-11-21

    IPC分类号: G06N5/02

    摘要: An online sparse matrix Gaussian process (OSMGP) uses online updates to provide an accurate and efficient regression for applications such as pose estimation and object tracking. A regression calculation module calculates a regression on a sequence of input images to generate output predictions based on a learned regression model. The regression model is efficiently updated by representing a covariance matrix of the regression model using a sparse matrix factor (e.g., a Cholesky factor). The sparse matrix factor is maintained and updated in real-time based on the output predictions. Hyperparameter optimization, variable reordering, and matrix downdating techniques can also be applied to further improve the accuracy and/or efficiency of the regression process.

    摘要翻译: 在线稀疏矩阵高斯过程(OSMGP)使用在线更新来为姿态估计和对象跟踪等应用程序提供准确有效的回归。 回归计算模块根据学习的回归模型计算输入图像序列的回归以产生输出预测。 通过使用稀疏矩阵因子(例如,Cholesky因子)表示回归模型的协方差矩阵来有效地更新回归模型。 基于输出预测,稀疏矩阵因子实时维护和更新。 超参数优化,可变重排序和矩阵减法技术也可以应用于进一步提高回归过程的准确性和/或效率。