摘要:
According to an embodiment, a map converting method includes calculating existing frequency of depths in a first map, the first map corresponding to at least an image area of an image and each pixel of the first map representing a depth corresponding to a pixel of the image area; and first converting the first map into a second map that represents a depth in a first range for each pixel by using the existing frequency.
摘要:
According to one embodiment, an image processing method includes calculating an activity value for a first block, the activity value indicating a higher degree of activity as pixel values vary in a greater degree in the first block, and calculating a first evaluation value that indicates higher evaluation as a difference between a pixel value of the first block and a pixel value of a second block is smaller. The method further includes calculating a second evaluation value that indicates higher evaluation as correlation between a relative spatial relationship of the pixel value of the first block and that of the pixel value of the second block is higher, and calculating a third evaluation value by weighting the first evaluation value and the second evaluation value to search for the second block that corresponds to the first block, a weight of the first evaluation value is larger as the activity value is larger.
摘要:
According to an embodiment, an image processing apparatus creates a depth map representing distribution of depths of pixels in an image. The apparatus includes an area detecting unit configured to detect an area of a vertical object included in an image; a base depth adding unit configured to add a base depth to the image, the base depth being a basic distribution of depths of pixels in the image; and, a depth map creating unit configured to acquire at least one depth of a vicinity of a ground contact position of the vertical object from the base depth added to the image, and create the depth map by setting the acquired depth onto the base depth as a depth of the area of the vertical object.
摘要:
According to one embodiment, a parallax image generation apparatus comprises a calculation unit and a generation unit. The calculation unit is configured to calculate a distance between a target pixel value of a target pixel contained in an input image and a representative pixel value, and calculating a depth of the target pixel in a stereoscopic space in accordance with the distance. The generation unit is configured to generate, based on the depth, at least one parallax image corresponding to a view point different from that of the input image.
摘要:
According to one embodiment, a depth signal generating apparatus includes following units. The calculating unit is configured to calculate a statistic value for pixel values for each of predefined areas in the first image, and calculate, for each of predetermined base depth models, a first evaluation value based on the calculated statistic value. The correcting unit is configured to correct, based on a second evaluation value previously derived for the second image and a first degree of similarity indicating a similarity between the predetermined base depth models, the first evaluation value to derive second evaluation values for the predetermined base depth models. The selecting unit is configured to select a base depth model having the highest second evaluation value from the predetermined base depth models. The generating unit is configured to generate a depth signal based on the selected base depth model.
摘要:
According to one embodiment, a stereoscopic display device is for three-dimensionally displaying a display image to enable a viewer to view the display image by means of glasses. The device includes a receiving unit, a display memory unit, a controller unit, an adjusting unit, and a display unit. The receiving unit receives, from the glasses, glasses information used to identify an attribute of the glasses. The display memory unit stores parameter information corresponding to the received glasses information and used to control a quality of the display image when the display image is displayed. The controller unit generates image control information in accordance with the parameter information. The adjusting unit adjusts the display image based on the image control information to generate an adjusted display image. The display unit displays the adjusted display image.
摘要:
According to one embodiment, an apparatus includes a motion estimation unit, a generating unit, a detection unit, and a filtering unit. The motion estimation unit is configured to estimate a first motion vector from a first reference frame to a second reference frame. The generating unit is configured to assign a first pixel value and a second motion vector to an interpolation frame. The detection unit is configured to detect an occlusion region in the interpolation frame. The filtering unit is configured to assign the second motion vector to the occlusion region as a third motion vector, calculate degrees of difference between second pixel values derived from the second motion vectors and third pixel values derived from the third motion vectors, and assign a fourth pixel value derived from a fourth motion vector to the occlusion region, wherein the fourth motion vector is calculated based on the degrees of difference.
摘要:
An interpolated image generating apparatus calculates a motion vector reliability level indicating reliability of a motion vector used for inserting an interpolated image, the value of the motion vector reliability level being determined in such a manner that the stronger the correlation is between a source image area and a destination image area that are brought into correspondence with each other by the motion vector, the larger is the value. The apparatus also calculates a failure-preventing vector reliability level indicating reliability of a predetermined failure-preventing vector used for preventing image failures. The apparatus obtains a motion compensated image based on the motion vector, obtains a failure-preventing image based on the failure-preventing vector, and blends the motion compensated image and the failure-preventing image according to a weighted average thereof calculated by using a weighting factor based on the motion vector reliability level and the failure-preventing vector reliability level.
摘要:
An interpolation image generating method includes dividing each of the first reference image and the second reference image into reference regions each including pixels, executing a correlation operation between the first reference image and first destination images located before and after the first reference image and a correlation operation between the second reference image and a second destination image to derive motion vectors for the first and second destination images every reference region, obtaining correlation values between the regions of the first and second destination images that are indicated by the motion vectors and the reference region to determine the reference region as a high or low correlation region, generating an interpolation image candidate between the first reference and second images using the reference region determined as the high correlation region, and mixing the interpolation image candidates using the motion vectors of the reference region to produce an interpolation image.
摘要:
A motion vector detection method includes extracting a first block from the m-th picture, extracting second blocks having a large correlation with respect to the first block from a (m+n)-th picture ((m+n)>m-th), detecting first motion vectors between the first and second blocks, extracting a third block located in spatially the same position as that of the first block from a (m+i)-th picture ((m+n)>(m+i)>m-th), computing second motion vectors of (n−1)/n times the first motion vectors, extracting a fourth block corresponding to a movement position of the third block from the (m+n)-th picture according to the second motion vector, and selecting an optimum motion vector maximizing a correlation between the third and fourth blocks from the first motion vectors.