Abstract:
Process for preparing (meth)acrylates of C10-alcohol mixtures, by reacting (meth)acrylic acid with an isomer mixture of C10-alcohols composed of 2-propylheptanol as the main isomer and at least one of the C10-alcohols 2-propyl-4-methylhexanol, 2-propyl-5-methylhexanol, 2-isopropylheptanol, 2-isopropyl-4-methylhexanol, 2-isopropyl-5-methylhexanol and/or 2-propyl-4,4-dimethylpentanol, in the presence of at least one acidic catalyst and of at least one polymerization inhibitor and in the presence of a solvent which forms an azeotrope with water, the azeotrope is distilled off and condensed, and the condensate splits into an aqueous phase and an organic phase, wherein a) the esterification is performed in a reactor with a circulation evaporator and b) in the presence of a solvent, and c) the crude product is purified by subsequent purifying distillation.
Abstract:
A process for producing moldings, in which a solventborne or aqueous, pigmented coating composition (P) and a free-radically crosslinkable coating composition (K), which after crosslinking to completion produces a transparent coating (KE) are applied to a support sheet, a dried but as yet not completely crosslinked coating (KT) is produced from the coating composition (K), the coated support sheet is shaped and is injection backmolded or foam-backed with a liquid polymeric material, and the coating (KT)—if this has not already taken place—is cured or aftercured; the crosslinkable coating composition (K) comprising a free- radically crosslinkable component (KK) which comprises carbamate and/or biuret and/or allophanate and/or urea and/or amide groups.
Abstract:
The invention relates to a radiation-curable laminated sheet or film comprising at least one substrate layer and a top layer which comprises a radiation-curable material having a glass transition temperature below 50° C. and having a high double bond density, processes for the production thereof and the use thereof.
Abstract:
The invention relates to a radiation-curable laminated sheet or film comprising at least one substrate layer and a top layer which comprises a radiation-curable material having a glass transition temperature below 50° C. and having a high double bond density, processes for the production thereof and the use thereof.
Abstract:
A process for producing moldings, in which a pigmented coating composition (P) and a free-radically crosslinkable coating composition (K), which after crosslinking to completion produces a transparent coating (KE) are applied to a support sheet a dried but as yet not completely crosslinked coating (KT) is produced from the coating composition (K), the coated support sheet is shaped and is injection backmolded or foam-backed with a liquid polymeric material, and the coating (KT)—if this has not already taken place—is cured or aftercured; the crosslinkable coating composition (K) comprising a free-radically crosslinkable component (KK) which contains hydrogen bond forming structural elements in an amount such that 1. a coating (MT) produced from the mixture (M) of component (KK) with additives, but as yet not crosslinked to completion, has a ratio of storage modulus G(MT)′ to loss modulus G(MT)″ of from 5 to 200, G(MT)′ and G(MT)″ having been determined at 20° C. by means of rheological oscillation measurements, and 2. a coating (ME) produced from the mixture (M) of component (KK) with additives and crosslinked to completion has a storage modulus E(ME)″ of from 1.0*107.0 to 8.0*107.0 Pa, E(ME)′ having been measured in the rubber-elastic range by dynamic mechanical thermal analysis.
Abstract:
A process for producing moldings, in which a solventborne or aqueous, pigmented coating composition (P) and a free-radically crosslinkable coating composition (K), which after crosslinking to completion produces a transparent coating (KE) are applied to a support sheet, a dried but as yet not completely crosslinked coating (KT) is produced from the coating composition (K), the coated support sheet is shaped and is injection backmolded or foam-backed with a liquid polymeric material, and the coating (KT)—if this has not already taken place—is cured or aftercured; the crosslinkable coating composition (K) comprising a free-radically crosslinkable component (KK) which comprises carbamate and/or biuret and/or allophanate and/or urea and/or amide groups.