摘要:
An electrochemical-cell stack assembly is provided. The assembly has an electrochemical-cell stack and a compression system that holds the electrochemical-cell stack in a state of compression. The compression system has a first endplate and a second endplate positioned at opposite ends of the electrochemical-cell stack. The compression system has a set of tension members coupled to the first endplate and the second endplate that maintain a fixed distance between the first endplate and the second endplate. The compression system has a compression plate disposed between the second endplate and the electrochemical-cell stack. The compression system has a compression member in contact with the compression plate, wherein the compression member is configured to transfer a force to the compression plate. The compression system has a locking nut fastened to the second plate. The locking nut secures the position of the compression member and compression plate relative to the second endplate.
摘要:
In accordance with one embodiment, an electrochemical cell stack compression system may include an integral, hollow frame configured to contain a plurality of electrochemical cells arranged along an axis in a stack configuration. The frame may have a defined shape and may form a continuous border around a periphery of the electrochemical cell stack when inserted. The frame may be formed of a plurality of fibers.
摘要:
The present disclosure is directed to a method and system for dynamically controlling seal decompression. The method includes monitoring a set of parameters associated with an operation of a seal, wherein the set of parameters includes a maximum pressure subjected to the seal and an exposure time at the maximum pressure, calculating a target pressure ramp down rate based on at least one of the maximum pressure and the exposure time, and decreasing a pressure about the seal at a decompression rate that is based on the target pressure ramp down rate. The system includes a controller having a memory device, a graphical user interface, at least one pressure transmitter configured to monitor the pressure about the seal, and a processor, wherein the processor is configured to detect a maximum exposure pressure and exposure time at maximum pressure about the seal and control a pressure ramp down about the seal based on the maximum exposure pressure and the exposure time detected in order to prevent explosive decompression of the seal.
摘要:
An electrochemical cell is disclosed comprising, a first flow structure, a second flow structure, and a membrane electrode assembly disposed between the first and second flow structures. The electrochemical cell further comprises a pair of bipolar plates, wherein the first flow structure, the second flow structure, and the membrane electrode assembly are positioned between the pair of bipolar plates. The electrochemical cell also includes a spring mechanism, wherein the spring mechanism is disposed between the first flow structure and the bipolar plate adjacent to the first flow structure, and applies a pressure on the first flow structure in a direction substantially toward the membrane electrode assembly.
摘要:
The present disclosure is directed towards the design of bipolar plates for use in conduction-cooled electrochemical cells. Heat generated during the operation of the cell is removed from the active area of the cell to the periphery of the cell via the one or more bipolar plates in the cell. The one or more bipolar plates are configured to function as heat sinks to collect heat from the active area of the cell and to conduct the heat to the periphery of the plate where the heat is removed by traditional heat transfer means. The boundary of the one or more bipolar plates can be provided with heat dissipation structures to facilitate removal of heat from the plates. To function as effective heat sinks, the thickness of the one or more bipolar plates can be determined based on the rate of heat generation in the cell during operation, the thermal conductivity (“k”) of the material selected to form the plate, and the desired temperature gradient in a direction orthogonal to the plate (“ΔT”).
摘要:
An electrochemical-cell stack assembly is provided. The assembly has an electrochemical-cell stack and a compression system that holds the electrochemical-cell stack in a state of compression. The compression system has a first endplate and a second endplate positioned at opposite ends of the electrochemical-cell stack. The compression system has a set of tension members coupled to the first endplate and the second endplate that maintain a fixed distance between the first endplate and the second endplate. The compression system has a compression plate disposed between the second endplate and the electrochemical-cell stack. The compression system has a compression member in contact with the compression plate, wherein the compression member is configured to transfer a force to the compression plate. The compression system has a locking nut fastened to the second plate. The locking nut secures the position of the compression member and compression plate relative to the second endplate.
摘要:
An electrochemical-cell stack assembly is provided. The assembly has an electrochemical-cell stack and a compression system that holds the electrochemical-cell stack in a state of compression. The compression system has a first endplate and a second endplate positioned at opposite ends of the electrochemical-cell stack. The compression system has a set of tension members coupled to the first endplate and the second endplate that maintain a fixed distance between the first endplate and the second endplate. The compression system has a compression plate disposed between the second endplate and the electrochemical-cell stack. The compression system has a compression member in contact with the compression plate, wherein the compression member is configured to transfer a force to the compression plate. The compression system has a locking nut fastened to the second plate. The locking nut secures the position of the compression member and compression plate relative to the second endplate.
摘要:
The present disclosure is directed to a fuel cell module. The fuel cell module may include a fuel cell having an anode, a cathode, and an electrolyte positioned between the anode and the cathode. The fuel cell module may also include an enclosure housing the fuel cell therein. The enclosure may include an air inlet and an air outlet. The fuel cell module may further include an air pressurizing mechanism fluidly connected to the enclosure. The air pressurizing mechanism may be configured to draw air through the air inlet into the enclosure and from the enclosure to the air pressurizing mechanism through the air outlet. The air pressurizing mechanism may be configured to pressurize the air to form a pressurized air stream that is directed to the cathode.
摘要:
The electrochemical cell stack assembly has electrochemical cell sub-stacks. A first and second electrochemical cell sub-stack are connected electrically in series and fluidly in parallel. The first and second electrochemical cell sub-stacks have electrochemical cells. The electrochemical cells have a membrane electrode assembly with an cathode catalyst layer, an anode catalyst layer, and a polymer membrane therebetween. The electrochemical cells have an anode plate and a cathode plate with the membrane electrode assembly interposed therebetween, a cathode flow field, and the anode plate.
摘要:
The present disclosure is directed to steam reformers for the production of a hydrogen rich reformate, comprising a shell having a first end, a second end, and a passage extending generally between the first end and the second end of the shell, and at least one heat source disposed about the second end of the shell. The shell comprises at least one conduit member comprising at least one thermally emissive and high radiant emissivity material, at least partially disposed within the shell cavity. The shell further comprises at least one reactor module at least a portion of which is disposed within the shell cavity and about the at least one conduit member and comprises at least one reforming catalyst. The disclosure is also directed to methods of producing a hydrogen reformate utilizing the steam reformers, comprising the steps of combusting a combustible mixture in a burner to produce a combustion exhaust that interacts with the steam reactor module(s) through surface to surface radiation and convection heat transfer, and reforming a hydrocarbon fuel mixed with steam in the steam reformers to produce a hydrogen-containing reformate. The present disclosure is further directed to reactor modules for use with the above steam reformers and methods of producing a hydrogen reformate.