Bipolar plate having a polymeric coating

    公开(公告)号:US10727501B2

    公开(公告)日:2020-07-28

    申请号:US16508699

    申请日:2019-07-11

    发明人: Roger Van Boeyen

    摘要: The present disclosure is directed to a bipolar plate of an electrochemical cell. The bipolar plate may have a frame and a base. The bipolar plate may also have a polymeric coating applied to at least one of the frame and the base. The present disclosure is also directed to a method of assembling a bipolar plate for an electrochemical cell. The method may include compressing a frame and a base of the bipolar plate, at least one of the frame and the base has a polymeric coating. The polymeric coating may be an electrical insulator for the electrochemical cell, a seal for sealing one or more zones of the electrochemical cell, and a corrosion protection later of the electrochemical cell.

    Generation of oxygen depleted air by a fuel cell system

    公开(公告)号:US10553886B2

    公开(公告)日:2020-02-04

    申请号:US15208148

    申请日:2016-07-12

    摘要: The present disclosure is directed to a fuel cell system for generating oxygen depleted air. The fuel cell system may include a fuel cell having an anode, a cathode, and an electrolyte positioned between the anode and the cathode. The cathode may be configured to receive an air flow and discharge an oxygen depleted air flow. The fuel cell system may further include a sensor configured to generate a first signal indicative of a presence of hydrogen in the oxygen depleted air flow and a controller in communication with the sensor and the fuel cell. The controller may be configured to detect the presence of hydrogen in the oxygen depleted air flow based on the first signal, and in response to detecting the presence of hydrogen in the oxygen depleted air flow, selectively cause a current density of the fuel cell to decrease and/or increase a flow rate of the air flow to the cathode.

    FUEL CELL MODULE ARRANGEMENT WITH LEAK RECOVERY AND METHODS OF USE

    公开(公告)号:US20190140293A1

    公开(公告)日:2019-05-09

    申请号:US16173142

    申请日:2018-10-29

    发明人: Scott Blanchet

    摘要: The present disclosure is directed to a fuel cell module. The fuel cell module may include a fuel cell having an anode, a cathode, and an electrolyte positioned between the anode and the cathode. The fuel cell module may also include an enclosure housing the fuel cell therein. The enclosure may include an air inlet and an air outlet. The fuel cell module may further include an air pressurizing mechanism fluidly connected to the enclosure. The air pressurizing mechanism may be configured to draw air through the air inlet into the enclosure and from the enclosure to the air pressurizing mechanism through the air outlet. The air pressurizing mechanism may be configured to pressurize the air to form a pressurized air stream that is directed to the cathode.

    Regulating flow of pressure swing adsorbers

    公开(公告)号:US10201775B2

    公开(公告)日:2019-02-12

    申请号:US15208255

    申请日:2016-07-12

    摘要: A pressure swing adsorption (PSA) system for purifying a feed gas is provided. The PSA system may have a first adsorber bed and a second adsorber bed, each having a feed port, a product port, and adsorbent material designed to adsorb one or more impurities from the feed gas to produce a product gas. The PSA system may also have a first valve configured to direct flows of the feed gas and the product gas through a network of piping. The PSA system may further have a first orifice configured to regulate a flow rate of gas between the first adsorber bed and the second adsorber bed during the pressure equalization step and a second orifice configured to regulate a flow rate of gas between the first adsorber bed and the second adsorber bed during the purge step.

    STEAM REFORMERS, MODULES, AND METHODS OF USE

    公开(公告)号:US20190015805A1

    公开(公告)日:2019-01-17

    申请号:US16133799

    申请日:2018-09-18

    摘要: The present disclosure is directed to steam reformers for the production of a hydrogen rich reformate, comprising a shell having a first end, a second end, and a passage extending generally between the first end and the second end of the shell, and at least one heat source disposed about the second end of the shell. The shell comprises at least one conduit member comprising at least one thermally emissive and high radiant emissivity material, at least partially disposed within the shell cavity. The shell further comprises at least one reactor module at least a portion of which is disposed within the shell cavity and about the at least one conduit member and comprises at least one reforming catalyst. The disclosure is also directed to methods of producing a hydrogen reformate utilizing the steam reformers, comprising the steps of combusting a combustible mixture in a burner to produce a combustion exhaust that interacts with the steam reactor module(s) through surface to surface radiation and convection heat transfer, and reforming a hydrocarbon fuel mixed with steam in the steam reformers to produce a hydrogen-containing reformate. The present disclosure is further directed to reactor modules for use with the above steam reformers and methods of producing a hydrogen reformate.