Abstract:
A method, system and computer-readable storage medium with instructions to migrate full-disk encrypted virtual storage between blade servers. A key is obtained to perform an operation on a first blade server. The key is obtained from a virtual security hardware instance and provided to the first blade server via a secure out-of-band communication channel. The key is migrated from the first blade server to a second blade server. The key is used to perform hardware encryption of data stored on the first blade server. The data are migrated to the second blade server without decrypting the data at the first blade server, and the second blade server uses the key to access the data. Other embodiments are described and claimed.
Abstract:
In accordance with some embodiments, a single trusted platform module per platform may be used to handle conventional trusted platform tasks as well as those that would arise prior to the existence of a primary trusted platform module in conventional systems. Thus one single trusted platform module may handle measurements of all aspects of the platform including the baseboard management controller. In some embodiments, a management engine image is validated using a read only memory embedded in a chipset such as a platform controller hub, as the root of trust. Before the baseboard management controller (BMC) is allowed to boot, it must validate the integrity of its flash memory. But the BMC image may be stored in a memory coupled to a platform controller hub (PCH) in a way that it can be validated by the PCH.
Abstract:
Memory reconfiguration during system run-time is described. In one example, a system includes a memory slot to carry a memory board and to connect the memory board to a memory controller for read and write operations, a logic device having a plurality of status registers to record the status of the memory slot and a plurality of control registers to control the operation of the memory slot, and a bus interface coupled through direct signal lines to the memory slot to communicate status and control signals with the memory slot and coupled through a serial bus to the logic device to communicate status and control signals with the logic device.
Abstract:
An apparatus includes a memory that is accessible by an operating system; and a basic input/output system (BIOS) handler. The BIOS handler, in response to detected malicious software activity, stores data in the memory to report the activity to the operating system.
Abstract:
A method, apparatus, system, and computer program product for multi-owner deployment of firmware images. The method includes obtaining a signed firmware image that comprises a first code module signed by a first code owner and a second code module signed by a second code owner. The method further includes obtaining an updated first code module comprising updated code for the first code module, verifying that the updated first code module is signed by the first code owner, and updating the signed firmware image with the updated first code module in response to verifying that the updated first code module is signed by the first code owner. The signed firmware image may further comprise an access control list that authorizes updates to the first code module by the first code owner and updates to the second code module by the second code owner.
Abstract:
A software-defined radio (SDR) capability may be provided in a general purpose, many core processing system by sequestering one or more partitions running on one or more cores and instantiating a communications capability by having discrete SDR functions performed by the sequestered partitions. Each SDR module embodied in a sequestered partition may be independently upgraded without modifying the hardware of the underlying processing system. By executing SDR modules in cores not accessible by application programs and/or an operating system (OS), a better Quality of Service (QoS) may be provided for wireless communications on the general purpose, multi-core processing system. An embodiment comprises isolating a core of a many core processing system as a sequestered partition, loading a software-defined radio module onto the core, and executing the software-defined module to implement wireless communications.
Abstract:
Radio frequency identification (RFID) tags embedded in processors within a computing system provide a separate communication path to other components of the computing system during initialization processing, apart from the system interconnect. Upon powering up, each processor causes its RFID tag to broadcast data regarding the processor's interconnect location and initialization status. A RFID receiver senses the RFID tags in the Platform Control Hub (PCH), and each processor's interconnect location and initialization status data is stored in registers within the PCH. During system initialization processing, the BIOS accesses these PCH registers to obtain the processor's data. The interconnect location and initialization status data is used by the BIOS to select the optimal routing table and configure the virtual network within the computing system based on the optimal routing table and the RFID tag data, without interrogating each processor individually over the system interconnect.
Abstract:
Enhancing locality in a security co-processor module of a computing system may be achieved by including one or more additional attributes such as geographic location, trusted time, a hardware vendor string, and one or more environmental factors into an access control space for machine mode measurement of a computing system.
Abstract:
A software-defined radio (SDR) capability may be provided in a general purpose, many core processing system by sequestering one or more partitions running on one or more cores and instantiating a communications capability by having discrete SDR functions performed by the sequestered partitions. Each SDR module embodied in a sequestered partition may be independently upgraded without modifying the hardware of the underlying processing system. By executing SDR modules in cores not accessible by application programs and/or an operating system (OS), a better Quality of Service (QoS) may be provided for wireless communications on the general purpose, multi-core processing system. An embodiment comprises isolating a core of a many core processing system as a sequestered partition, loading a software-defined radio module onto the core, and executing the software-defined module to implement wireless communications.
Abstract:
A method and apparatus for improving the resume time of a platform. In one embodiment of the invention, the context of the platform is saved prior to entering an inactive state of the platform. When the platform is switched back to an active state, it reads the saved context and restores the platform to its original state prior to entering the inactive state. In one embodiment of the invention, the platform determines whether it should compress the saved context before storing it in a non-volatile memory based on the operating condition of the platform. This allows the platform to select the optimum method to allow faster resume time of the platform.