摘要:
Apparatus for producing tunable intense coherent radiation at approximately 628 cm..sup.-1 with a line width less than 0.1 cm..sup.-1. The apparatus includes an optical cavity containing a vapor cell and pumping means including at least one optical pumping source for directing energy at the cavity. In one embodiment the cavity encloses a material capable of stimulated emission in response to said pumping. The material has at least three atomic energy levels with at least a first and second atomic energy level separated by a particular energy quantum approximately equal to 628 cm.sup.-1 ; a transition from said first to said second atomic energy level favored over all other possible transitions from said first atomic energy level; said third atomic energy level, from which atoms can be pumped to said first atomic energy level in response to said pumping means. While this is consistent with classical laser operation the apparatus disclosed herein can also be used for stimulated Raman scattering. Tunability is achieved by tuning the pumping sources in the case of stimulated Raman scattering, or with the aid of the Zeeman or Stark effects for classical laser operation. Typical materials are potassium or strontium vapors. Several pumping arrangements are also disclosed.
摘要:
A light responsive device (10) has a body (12) that includes a matrix comprised of Group III-V material, the matrix having inclusions (14) comprised of a Group V material contained therein. The body is responsive to a presence of a light beam that has a spatially varying intensity for modifying in a corresponding spatially varying manner a distribution of trapped photoexcited charge carriers within the body. The distribution of trapped charge carriers induces a corresponding spatial variation in at least one optical property of the Group III-V material, such as the index of refraction of the Group III-V material and/or an absorption coefficient of the Group III-V material. The Group III-V material is comprised of LTG GaAs:As or LTG AlGaAs:As. In an optical storage medium embodiment of the invention the spatial variation in the intensity of the light beam results from a simultaneous application of a first light beam (LB1) and a second light beam (LB2) to the body, and from interference fringes resulting from an intersection of said first and second light beams.