Abstract:
The present invention provides a driving circuit for display panel, which comprises a power supply circuit and a driving unit. The power supply circuit outputs a driving power supply voltage. The driving unit produces a driving signal according to a data signal and the driving power supply voltage for driving the display panel. In addition, the voltage level of the driving power supply voltage increases to a predetermined level. Thereby, during the process of charging the display panel by the data driving circuit, the driving power supply voltage output by the power supply circuit increases from a low level to a predetermined level for reducing the power consumption of the driving circuit.
Abstract:
The present disclosure provides a voltage calibration circuit. The voltage calibration circuit includes a coupling voltage detection circuit and a common voltage circuit. The coupling voltage detection circuit is used for detecting a coupling voltage in an initial phase and generating a compensation voltage according to the coupling voltage. The common voltage circuit is used for adjusting a common voltage according to the compensation voltage and outputting the common voltage to a display module in a display phase.
Abstract:
A display apparatus for displaying a display information includes a display panel, and a plurality of gate drivers and a plurality of source drivers coupled to the display panel. When one abnormal driver exists among the plurality of gate drivers and the plurality of source drivers, the other functionally operating gate drivers and source drivers transform the display information into a transformed display information to transmit the transformed display information to the display panel for a display operation.
Abstract:
The present invention relates to a decoding and scan driver, which comprises a level-shift circuit, a decoding circuit, an output driving circuit, and a control circuit. The level-shift circuit receives a plurality of input signals and shifts the voltage levels of the plurality of input signals for producing a plurality of decoding control signals. The decoding circuit is coupled to the level-shift circuit and produces a plurality of decoding signals according to the plurality of decoding control signals. The output driving circuit is coupled to the decoding circuit, produces a driving signal sequentially according to the plurality of decoding signals, and outputs the driving signal for driving a display panel. The control circuit is coupled to the output driving circuit, produces a control signal according to one of the plurality of input signals, and transmits the control signal to the output driving circuit for controlling the output driving circuit to output the driving signal. Thereby, the circuit area of the decoding and scan driver is saved and the cost is thus reduced.
Abstract:
The present invention relates to a driving circuit for a display panel and the driving module thereof and a display device and the method for manufacturing the same. The present invention comprises a power generating module, a plurality of signal generating units, a power generating circuit, and a scan control circuit. The power generating module generates a supply power source according to an input power source. The plurality of signal generating units are coupled to the power generating module and generate a plurality of control signals according to the supply power source and a plurality of input signals. The power generating circuit generates a driving power source. The scan control circuit is coupled to the power generating circuit and the plurality of signal generating unit, and generates a plurality of scan signals according to the driving power source and at least one of the plurality of control signals.
Abstract:
An active probe card capable of improving testing bandwidth of a device under (DUT) test includes a printed circuit board; at least one probe needle, affixed to a first surface of the printed circuit board for probing the DUT; at least one connection member, electrically connected to the at least one probe needle; and an amplification circuit, formed on the printed circuit board and coupled to the at least one connection member for amplifying an input or output signal of the DUT.
Abstract:
The present invention discloses a power circuit having multiple stages of charge pumps. The power circuit comprises a first charge pump, a second charge pump, a voltage stabilizing capacitor, and an output capacitor. The first charge pump adjusts an input voltage and produces a first output voltage. The second charge pump adjusts the first output voltage, produces a second output voltage, and outputs the second output voltage for driving a loading. The voltage stabilizing capacitor is coupled between the first and second charge pumps and connected externally to the output of the first charge pump. The output capacitor is coupled to the second charge pump for providing the second output voltage. According to the present invention, the effect of supplying large transient currents to the loading can be achieved by connecting externally the voltage stabilizing capacitor to the output of the first charge pump.
Abstract:
A method of refreshing a memory array for a driving circuit includes generating a word-line scanning signal corresponding to a word-line of a memory array, and turning on a plurality of memory cells corresponding to the word-line of the memory array according to the word-line scanning signal to refresh the plurality of memory cells corresponding to the word-line of the memory array, wherein the memory has a first number of bit-lines and a second number of word-lines.
Abstract:
The present disclosure provides a voltage calibration circuit. The voltage calibration circuit includes a coupling voltage detection circuit and a common voltage circuit. The coupling voltage detection circuit is used for detecting a coupling voltage in an initial phase and generating a compensation voltage according to the coupling voltage. The common voltage circuit is used for adjusting a common voltage according to the compensation voltage and outputting the common voltage to a display module in a display phase.
Abstract:
The present invention relates to a power circuit of displaying device, which comprises a timing controller, a control circuit, and a charge pump (single or multiple stages). The timing controller outputs a timing control signal to the control circuit. The control circuit outputs a clock signal or a capacitance adjusting signal according to the timing control signal. The charge pump receives the input voltage and outputs an output voltage according to the clock signal or the capacitance adjusting signal. The output voltage is provided to the scan driver for generating a plurality of scan driving signals. Accordingly, by increasing the rise rate of the output voltage of the charge pump in the voltage conversion time and reducing the rise rate of the output voltage close to the voltage holding time, the present invention can achieve the effect of reducing the power consumption.