Abstract:
A water heater has a modular control system. The water heater comprises a tank, a heating element, a first controller, and a second controller. The heating element is coupled to the tank. The first controller is mounted on the tank and has a first communication port. The second controller has a second communication port communicatively coupled to the first communication port of the first controller. The first controller is configured to control the heating element in accordance with a first algorithm in an absence of the second controller, and the second controller is configured to control the heating element in accordance with a second algorithm.
Abstract:
A system for controlling temperature control elements used to alter temperatures of a liquid comprises a temperature sensor, a first temperature control element, a second temperature control element, and logic. The temperature sensor is configured to sense temperatures of the liquid, and the first and second temperature control elements are each configured to alter a temperature of the liquid. The logic is configured to selectively control, based on the sensed temperatures, activation states of the first and second temperature control elements such that a total activation time associated with the first temperature control element is substantially equal to a total activation time associated with the second temperature control element.
Abstract:
A door closer comprises a piston cooperating with a rotating pinion. Upon rotation of the pinion in the door opening direction, the piston moves toward the second end of the housing forcing fluid from a second variable volume chamber through a passage to a first variable volume chamber and compressing a spring assembly for storing energy. The spring assembly urges the piston toward the first end of the housing for forcing fluid from the first variable volume chamber to the second variable volume chamber and rotating the pinion in the door closing direction. A controller controls the position of a valve in the passage based on the sensed angular position of a door and the position of the valve for determining the amount of hydraulic fluid flowing through the valve.
Abstract:
A self-adjusting door closer is disclosed. The door closer is self powered and includes a control unit to intelligently control a valve within the door closer to vary the operating characteristics of the door closer as needed. The controller includes a position sensor to determine a position of the door, and at least one input switch to enable user selection of at least one door closer parameter for an installed door closer. The control circuitry is operable to set the valve in response to the user selection of the door closer parameters, and the position of the door, in order to control force exerted by the door closer on the door. A generator can be provided to provide electricity to power the controller and store power to operate the controller.
Abstract:
A water heating system, comprises a tank, a bracket, a heating element, and a controller. The bracket has a hole and a notch. The heating element is mounted on the tank, and the heating element passes through the hole. The controller is inserted into the notch. Further, the controller comprises a relay coupled to the heating element and logic configured to control a state of the relay. The logic resides in a portion of the controller that is inserted into the notch.
Abstract:
A water heating system has a controller that is electronically actuated. In this regard, the controller controls an activation state of at least one heating element by providing an electrical control signal to a relay. In one embodiment, the controller has an emergency shut-off apparatus that is mechanically actuated. Further various features can be optionally implemented to help heat related problems plaguing many conventional water heater controllers that are electronically actuated.
Abstract:
A water heater has a modular control system. The water heater comprises a tank, a heating element, a first controller, and a second controller. The heating element is coupled to the tank. The first controller is mounted on the tank and has a first communication port. The second controller has a second communication port communicatively coupled to the first communication port of the first controller. The first controller is configured to control the heating element in accordance with any desired algorithm in an absence of the second controller, and the second controller is configured to perform at least one function in addition to or in lieu of the first controller.