Abstract:
A wind turbine blade system having a blade rotatably attached to a rotor of a wind turbine. The system further includes a controller and one or more openings disposed along at least one surface of the blade and a fluid moving device arranged and disposed to provide a fluid to or from the one or more openings. A controlled amount of the fluid is provided to the one or more openings. The amount of fluid is determined by the controller. A wind turbine and a method for operating a wind turbine are also disclosed.
Abstract:
An active flow control (AFC) system for use with a wind turbine is provided. The wind turbine includes at least one rotor blade. The AFC system includes at least two manifolds at least partially defined within the at least one rotor blade, at least one aperture in flow communication with each manifold of the at least two manifolds, a gas supply coupled in flow communication with the at least two manifolds, and a valve system operatively coupled to the gas supply. The valve system is configured to block a gas flow to a first manifold of the at least two manifolds to redistribute the gas flow to a second manifold of the at least two manifolds.
Abstract:
A method for optimizing energy production in a wind turbine includes pitching a plurality of rotor blades to a full operational angle, and utilizing an active flow control device in accordance with a generator speed and a rotor blade pitch setting to facilitate maintaining a predetermined generator rated power level.
Abstract:
A method of operating a wind turbine having at least one rotor blade and an active flow control (AFC) system is provided. The at least one rotor blade has at least one aperture defined through a surface thereof, and the AFC system is configured to modify aerodynamic properties of the rotor blade by ejecting gas through the aperture. The method includes operating the wind turbine in a normal mode, determining whether an estimated insect density value surrounding the wind turbine is above an insect density threshold value based on a measured environmental condition, and changing a mode of the wind turbine from the normal mode to a cleaning mode different than the normal mode based on the estimated insect density value. The cleaning mode includes adjusting at least one operation parameter of the wind turbine based on the estimated insect density value such that fouling of the aperture is reduced.
Abstract:
A method for optimizing energy production in a wind turbine includes pitching a plurality of rotor blades to a full operational angle, and utilizing an active flow control device in accordance with a generator speed and a rotor blade pitch setting to facilitate maintaining a predetermined generator rated power level.
Abstract:
An active flow control (AFC) system for use with a wind turbine is provided. The wind turbine includes at least one rotor blade having at least one manifold extending at least partially therethrough and at least one aperture defined through a surface of the at least one rotor blade. The at least one aperture is in flow communication with the at least one manifold. The AFC system includes an air intake duct configured to draw ambient air into the wind turbine, a self-cleaning air filter coupled in flow communication with the air intake duct and configured to filter the ambient air, and an AFC distribution system configured to eject the filtered air through the at least one aperture.
Abstract:
A method performed by a control system for operating a wind turbine includes operating a flow control system of the wind turbine in a first mode, and operating the flow control system in a second mode different than the first mode to facilitate removing debris from the flow control system. The second mode includes varying at least one of a velocity, a flow rate, and a direction of a fluid flow of the flow control system.