Abstract:
One or more air nozzles (31) create respective air jets (34) angled radially from a blunt trailing edge (22) of a wind turbine blade (20A-G). The jets create and maintain a radially flowing airstream (36) along the trailing edge that extinguishes vortex shedding (28). This reduces drag and noise, thus allowing blades to have an extensive blunt trailing edge, which increases resistance to buckling, thus enabling longer blades. The jets may be supplied by airflow from an air intake in a blade chamber (44), or a ram air intake (40), or a compressor (54). Each nozzle may be individually metered (60) and/or individually or group valved (58) to provide a particular airflow to each nozzle relative to the other nozzles. Overall airflow to the nozzles may be modulated responsive to ambient conditions, and may be further cyclically modulated responsive to an azimuth of the blade
Abstract:
A rotor which comprises at least one blade and at least one fluid routing device that is mechanically connected to one of the blades so that a fluid inlet thereof is placed in a lateral edge of the blade. The fluid routing device has a continuous channel with an inlet facing the opposite direction of rotation of the blades and an outlet. The continuous channel is sized and shaped to conduct fluid passing via the inlet. The fluid routing device includes a flow directing element that is mechanically connected to the outlet so as to direct the conducted fluid to adjust fluid flow in or on the mechanically connected blade.
Abstract:
A method of assembling an air distribution system for use in a rotor blade of a wind turbine. The rotor blade includes a sidewall at least partially defining a cavity extending from a blade root towards a blade tip. The method includes positioning at least a portion of a manifold within the cavity and coupling the manifold to the sidewall. The manifold extends from the blade root towards the blade tip and has a root end and an opposing tip end. A passage is defined from the root end to the tip end. A flow control device is coupled to the manifold root end and configured to channel air through the manifold. A bypass flow assembly is coupled to the manifold and configured to channel air through the air distribution system with the flow control device in a non-operating configuration.
Abstract:
An air distribution system for use with a wind turbine. The wind turbine includes a nacelle that is coupled to a tower and a rotor that is rotatably coupled to the nacelle with a rotor shaft. The rotor includes at least one rotor blade that is coupled to a hub. The air distribution system includes a conduit that is defined within the rotor shaft. The conduit provides flow communication between the nacelle and the rotor. An air-flow control assembly is coupled in flow communication with the conduit. The air-flow control assembly is configured to selectively channel air from the nacelle to the rotor and from the nacelle to ambient air.
Abstract:
A wind turbine generator includes at least one blade and a hub assembly. The hub assembly includes at least one substantially cylindrical wall defining a substantially annular hub cavity. The assembly also includes at least one substantially triangular frame inserted into the hub cavity and is fixedly coupled to the cylindrical wall. The assembly further includes at least one blade attachment apparatus having at least one blade support sleeve fixedly coupled to at least a portion of the cylindrical wall. The sleeve is configured to receive at least a portion of the wind turbine blade. The blade attachment apparatus also includes at least one blade pitch bearing having a blade portion and a hub portion. The hub portion is slidingly engaged with the blade portion blade portion and the blade portion is positioned radially outboard of the hub portion.
Abstract:
A system of operating a wind turbine that is capable of extending electricity production, such as in low and high wind speed environments. In accordance with various embodiments, a wind turbine speed maintenance system has a wind turbine with at least one turbine blade that has a trailing edge with a speed feature. The speed feature is connected to a controller and a pressure vessel, the controller selectively activating the speed feature in response to the turbine blade reaching a predetermined radial velocity.
Abstract:
A passive thrust enhancement system having a propeller, which includes a propeller hub, a first propeller blade, a second propeller blade, wherein each of the first and second propeller blades include a fluid flow channel within the first and second propeller blades, which is fluidly connected to a flow exit slot, and a flow capture device, which includes a plenum chamber, mounted on the propeller hub, wherein the plenum chamber is fluidly connected to the fluid flow channels.
Abstract:
A blade for a wind turbine includes a device for causing air at an increased velocity and/or pressure to escape from exit openings in the blade, thereby to apply a force. Pressure and diameter adjustable valves may be provided at each exit opening or orifice to allow the air to exit from the blade only when the air pressure within the blade exceeds a preset level. Also disclosed is the provision of valves at the exit openings or orifices on an opposite edge of the blade that allows air to escape from the blade to slow down but not stop rotation of the blade when a dangerous wind condition is detected.
Abstract:
A blade for a rotor of a wind energy turbine includes opposite upper and lower faces, opposite leading and trailing edges connecting the upper and lower and at least one air outlet opening arranged on at least one of the upper face, the lower face and the trailing edge for discharging pressurized air into the air around at least one of the upper and lower faces and the leading and trailing edges.