Abstract:
As taught herein channelization code power estimates are generated for a number of data channels in a received CDMA signal based on a joint determination process. Joint processing in this context yields improved estimation of data channel code powers and corresponding estimations of noise variance. These improvements arise from exploitation of joint processing of measured data value correlations across two or more data channel codes represented in the received signal. In one or more embodiments, joint determination of data channel code powers comprises forming a correlation matrix as a weighted average of correlations determined for a plurality of data channels. In one or more other embodiments, joint determination of data channel code powers comprises jointly fitting the correlation matrices for a plurality of data channels in a least squares error estimation process.
Abstract:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
Abstract:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
Abstract:
Processing in a baseband processor is improved by estimating channelization code powers when processing received signals and reducing at least one of interference and noise power from the code power estimates. According to one embodiment of a wireless communication device such as a mobile phone or Local Area Network (LAN) adapter, the device comprises circuitry configured to receive a composite signal having contributions from a signal of interest and one or more interfering signals and a baseband processor. The baseband processor is configured to estimate channelization code powers for a channelization code associated with the signal of interest and one or more channelization codes associated with the one or more interfering signals. The baseband processor is also configured to reduce at least one of interference and noise power from the channelization code power estimates.
Abstract:
A node (e.g., base station, signal processing unit) is described herein that includes a symbol detector and a method which are capable of suppressing interference caused by one user device (which may be in softer handoff mode) to reduce performance degradation to other intra-cell user devices and/or other inter-cell user devices (which may not be in softer handoff mode).
Abstract:
A receiver reduces interference in a received symbol of interest attributable to an interfering symbol using knowledge of the symbol spreading codes. The receiver comprises a plurality of correlators generating despread values for the received symbol of interest and the interfering symbol, and a combiner to combine the despread values using combining weights calculated based on spreading code correlations between spreading codes for the received symbol of interest and the interfering symbol.
Abstract:
A Generalized Rake (G-Rake) receiver is adapted for Golden code reception in a CDMA system. Signals transmitted by two or more transmit antennas are received at two or more receiver antennas. The signal from each receiver antenna is despread, and channel estimation is performed for each transmit antenna. G-Rake combining weights are calculated based on impairment correlation across G-Rake fingers and channel coefficients corresponding to each transmit antenna. The despread values from each symbol period are combined over a plurality of symbol periods based on the combining weights. The combined values are processed using coefficients derived from the Golden number to generate a set of decision variables, and the Golden encoded symbols are jointly detected from the decision variables. In some embodiments, spherical decoding and triangularization significantly simplify the decoding problem formulation.
Abstract:
Exemplary received signal processing may be based on maintaining a model of received signal impairment correlations, wherein each term of the model is updated periodically or as needed based on measuring impairments for a received signal of interest. An exemplary model comprises an interference impairment term scaled by a first model fitting parameter, and a noise impairment term scaled by a second model fitting parameters. The model terms may be maintained based on current channel estimates and delay information and may be fitted to measured impairment by adapting the model fitting parameters based on the measured impairment. The modeled received signal impairment correlations may be used to compute RAKE combining weights for received signal processing, or to compute Signal-to-Interference (SIR) estimates. Combined or separate models may be used for multiple received signals. As such, the exemplary modeling is extended to soft handoff, multiple antennas, and other diversity situations.
Abstract:
The technology comprises method(s) and apparatus for operating a telecommunications system. In its basic form the method comprises providing plural channelization codes for potential use by an uplink receiver; using unused channelization codes of the plural codes to generate an estimate of an impairment covariance matrix; and using the estimate of the impairment covariance matrix to form a processing parameter. For example, the processing parameter can be one or more weight values which, in turn, are can be used for generating a combined output signal.
Abstract:
A parametric form of G-Rake and chip equalization for closed-loop transmit diversity is provided, that accounts for impairment correlation between transmit antennas. In a closed-loop transmit diversity system, the base station transmits a signal from two or more antennas, using one of a predetermined set of relative phase offsets at one of the antennas. The parametric estimation of the impairment or data covariance is performed by summing terms, including a term for each possible phase offset. The terms are weighted by fitting parameters. The fitting parameters are jointly solved by fitting the impairment or data covariance estimate to a measured impairment or data covariance. In another aspect, a measured impairment covariance is formed by exploiting a special relationship between the pilot channels of the different transmit antennas.