Abstract:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
Abstract:
Methods and systems are provided for processing a received signal including receiving the signal to provide a sequence of symbols associated with the received signal in respective ones of a plurality of symbol positions. A known block of the sequence of symbols containing known symbol values and an unknown block of the sequence of symbols containing unknown symbol values are identified. A desired demodulation type is determined for use in demodulating the unknown block based on the known symbol values. An interferer signal characteristic discontinuity location in the unknown block is detected. The unknown block is demodulated using a first selected demodulation type between the interferer signal characteristic discontinuity and the known block and a second selected demodulation type on another portion of the unknown block, the first selected demodulation type and the second selected demodulation type being selected based on the determined desired demodulation type for use in demodulating the unknown block and the detected interferer signal characteristic discontinuity.
Abstract:
An adaptive radio receiver utilizes control functions derived from received signals in an interference-limited environment to decide whether to implement conventional single-user demodulation or joint demodulation. The decision to implement joint or conventional demodulation is based upon the values of estimates derived for Doppler spread, carrier-to-interference plus noise, dispersiveness and the likelihood of the presence of a dominant interferer.
Abstract:
A pulse-shape estimator calculates an impulse response for the transmit and receive pulse-shaping filters in a mobile wireless terminal. The pulse-shape estimator receives a training signal that has passed through the pulse-shaping filters and known training symbols. Based on the actual received signal containing the training symbols and the expected received signal, the pulse-shape estimator estimates the impulse response of the pulse-shaping filters. The calculated impulse response may be used to improve signal demodulation or to calculate the coefficients for a digital filter applied before demodulation to compensate for pulse-shape distortion.
Abstract:
Channel Quality Indicator (CQI) tables are tailored to one or more cells of interest. Tailoring CQI tables to individual cells permits devices such as radio base stations to more reliably and accurately allocate radio resources to those cells since channel conditions vary from cell to cell. According to one embodiment, a table of CQI values is composed by analyzing information indicating channel quality in a cell of interest and generating at least one table of CQI values tailored to the cell of interest based on the information analyzed. The tailored CQI table may be deployed to another device for use in reporting channel quality information. The device may report channel quality by accessing the tailored CQI and identifying the range of CQI values that includes a channel quality estimate derived by the device. The device generates a channel quality information message based on the identified range of CQI values.
Abstract:
A method and apparatus for generating channel quality information, such as may be used for transmit link adaptation, provide different operating modes, such as a first mode that may be used when propagation channel estimates are not reliable, and a second mode that may be used when the propagation channel estimates are reliable. In one or more embodiments, channel quality information is generated using receiver performance information that characterizes receiver performance in terms of a defined channel quality metric, e.g., supported data rates, for different values of receiver input signal quality over a range of propagation channel realizations. Channel quality information can be generated by selecting channel quality metrics according to receiver input signal quality and a desired probability of meeting a defined performance requirement over a range of propagation channel realizations, or by selecting channel quality metrics according to receiver input signal quality and particularized propagation channel realizations.
Abstract:
Method and apparatus for two-user join demodulation in a system having transmit diversity. A receiver includes at least a detector unit and a channel estimation unit, and exploits transmit diversity employed by at least one of two users or transmitters on a channel. Symbol detection and channel estimation are performed in block or batch fashion, or recursively on a symbol-by-symbol basis. Joint detection makes use of transmit diversity by at least one of the transmitting users. Channel estimates can be updated using channel tracking. If the signals from the first user and the second user are asynchronous, detection can be accomplished in part through reference to a pulse-shape component. The receiver may be incorporated into a mobile communication terminal.
Abstract:
A joint demodulator is configured to generate an estimated first frequency or first frequency error for the first signal and an estimated second frequency or second frequency error for the second signal. A first long-term automatic frequency control is responsive to the estimated first frequency or first frequency error, wherein the joint demodulator is responsive to the first long-term automatic frequency control. A second long-term automatic frequency control is responsive to the estimated second frequency or second frequency error, wherein the joint demodulator is responsive to the second long-term automatic frequency control. First and second local automatic frequency controls also may be included in the joint demodulator, wherein the first long-term automatic frequency control is responsive to the first local automatic frequency control and the second long-term automatic frequency control is responsive to the second local automatic frequency control. The first long-term automatic frequency control and the second long-term automatic frequency control can produce respective first and second frequency offset signals that are applied to the joint demodulator. Alternatively, a difference between the first and second frequency offsets is applied to the joint demodulator and the first frequency offset is applied to a downconverter that downconverts the jointly received first and second signals and provides the downconverted signals to the joint demodulator.
Abstract:
A Doppler spread for a communications channel is measured by providing an estimate of the communications channel and generating an autocorrelation function for the estimate of the communications channel. One of a plurality of autocorrelation function hypotheses is selected to approximate the autocorrelation function for the estimate of the communications channel wherein each of the autocorrelation function hypotheses corresponds to a respective Doppler spread estimate hypothesis. One of the Doppler spread estimate hypotheses is selected corresponding to the selected autocorrelation function hypotheses as an estimate of the Doppler spread for the communications channel.
Abstract:
A digital radio communication system includes processing to jointly mitigate the deleterious effects of fading, time dispersion and interference using interference rejection and diversity combining. The system employs a selection processor for preliminarily reducing the number of signals for interference rejection and diversity combining based on one or more criterion. The system accommodates signals from dual polarized antennas. In one particular embodiment, the system performs interference rejection and diversity combining by separating a received signal into its in-phase and quadrature components.