Abstract:
A fracturing jet nozzle assembly features a series of angles nozzles on a rotatably mounted plate that operates in conjunction with a central nozzle or nozzles. The slanted nozzles are aimed into the perforation where the central nozzle is aimed directly so that the rotation of the nozzle plate from the slanted nozzles results in cyclic impacts in the perforation from where the fractures will propagate. The cyclic loading results in greater fracture formation and propagation. In another variation, relatively movable plates employing slanted nozzles rotate one plate with respect to another to get the effect of cyclic pulses of jetting fluid impingement in the perforation to enhance formation and propagation of fractures from the perforation.
Abstract:
A system including a first component, a second component disposed radially adjacent to the first component, and a centralizer disposed between the first component and the second component for at least partially filling a radial clearance between the first component and the second component. The centralizer is formed at least partially from a disintegrable material responsive to a selected fluid. A method of completing a borehole is also included.
Abstract:
A tubular anchoring system includes a first frustoconical member. Slips in operable communication with the first frustoconical member are radially expandable into an anchoring engagement with a structure in response to longitudinal movement relative to a frustoconical surface of the first frustoconical member. A collar in operable communication with the first frustoconical member is radially expandable into sealing engagement with the structure in response to longitudinal movement relative to a second frustoconical member. A seat in operable communication with the first frustoconical member having a surface configured to be sealingly engagable with a plug runnable thereagainst, is configured and positioned relative to the collar to aid the seat in maintaining a radially expanded configuration against a pressure differential formed across the seat when plugged.
Abstract:
Backup rings are disposed on opposed sides of a sealing element. The backup rings are initially bow shaped in the run in position. Opposed ends of the bow shape are brought together to extend the extrusion barriers and compress the sealing element. The relative axial movement that brings the opposed ends of the bow shape together results in radially extending the bow shape. The bow shape is reformed into a teardrop shape that extends radially beyond a pinch location created by relative axial movement of adjacent support members coming closer together. A sealing element extends radially during the deployment of the extrusion barriers and is contained between them. The extension of the extrusion barriers allows conformance to surface irregularities in the surrounding tubular or wellbore wall.
Abstract:
Thin wall sleeves are inserted into a well and expanded into sealing position to a surrounding tubular. Each sleeve has a ball seat. A zone is perforated after a sleeve is secured in position below the perforations. The ball is dropped onto the seat and pressure is built up to complete the fracturing. After all zones are perforated and fractured, the balls are removed, preferably by dissolving them and the thin walled sleeves are left in the tubular against which they have been expanded. Production can then begin from a selected zone. The objects can be of the same size for each sleeve. The sleeves can be run through tubing and into casing. Acid can be pumped to dissolve the objects.
Abstract:
A jarring device includes an outer housing which defines an axial flow path therethrough. An impact rotator is retained within the housing and is rotatable therewithin between a first rotational position and a second rotational position to create a jarring impact. A torsional spring biases the impact rotator toward the first rotational position. Fluid flow through the housing rotates the impact rotator from the first to the second rotational position.
Abstract:
A valving system includes a tubular and a sleeve slidably engaged with the tubular having a seat thereon. The sleeve is configured to occlude flow from an inside of the tubular to an outside of the tubular when in a first position, allow flow between an inside of the tubular and an outside of the tubular at a first location upstream of the seat and a second location downstream of the seat when in a second position, and allow flow between an inside of the tubular and an outside at the tubular at the first location and not the second location when in a third position. The valving system also includes a disappearing member in operable communication with the tubular and the sleeve configured to prevent movement of the sleeve to the third position until disappearance thereof.
Abstract:
An expandable screen assembly includes, a tubular, and a plurality of screens in operable communication with the tubular each of the plurality of screens is configured to radially expand in response to a same force longitudinally compressing the plurality of screens.
Abstract:
An erosion migration arrangement includes a tubular having a window therein. A body positioned within a portion of the window is configured to sacrificially erode in response to a slurry flowing through the window to thereby migrate a location of impact on a member positioned downstream of the window.