摘要:
Secure communications may be established amongst network entities for performing authentication and/or verification of the network entities. For example, a user equipment (UE) may establish a secure channel with an identity provider, capable of issuing user identities for authentication of the user/UE. The UE may also establish a secure channel with a service provider, capable of providing services to the UE via a network. The identity provider may even establish a secure channel with the service provider for performing secure communications. The establishment of each of these secure channels may enable each network entity to authenticate to the other network entities. The secure channels may also enable the UE to verify that the service provider with which it has established the secure channel is an intended service provider for accessing services.
摘要:
Systems, methods, and instrumentalities are disclosed that provide for a gateway outside of a network domain to provide services to a plurality of devices. For example, the gateway may act as a management entity or as a proxy for the network domain. As a management entity, the gateway may perform a security function relating to each of the plurality of devices. The gateway may perform the security function without the network domain participating or having knowledge of the particular devices. As a proxy for the network, the gateway may receive a command from the network domain to perform a security function relating to each of a plurality of devices. The network may know the identity of each of the plurality of devices. The gateway may perform the security function for each of the plurality of devices and aggregate related information before sending the information to the network domain.
摘要:
Integrity validation of a network device may be performed. A network device comprising a secure hardware module, may receive a root key. The secure hardware module may also receive a first code measurement. The secure hardware module may provide a first key based on the root key and the first code measurement. The secure hardware module may receive a second code measurement and provide a second key based on the first key and the second code measurement. The release of keys based on code measurements may provide authentication in stages.
摘要:
A device may include a trusted component. The trusted component may be verified by a trusted third party and may have a certificate of verification stored therein based on the verification by the trusted third party. The trusted component may include a root of trust that may provide secure code and data storage and secure application execution. The root of trust may also be configured to verify an integrity of the trusted component via a secure boot and to prevent access to the certain information in the device if the integrity of the trusted component may not be verified.
摘要:
Methods, components and apparatus for implementing platform validation and management (PVM) are disclosed. PVM provides the functionality and operations of a platform validation entity with remote management of devices by device management components and systems such as a home node-B management system or component. Example PVM operations bring devices into a secure target state before allowing connectivity and access to a core network.
摘要:
A method for secure direct link communications between multiple wireless transmit/receive units (WTRUs). The WTRUs exchange nonces that are used for generating a common nonce. A group identification information element (GIIE) is generated from at least the common nonce and is forwarded to an authentication server. The authentication server generates a group direct link master key (GDLMK) from the GIIE to match WTRUs as part of a key agreement group. Group key encryption key (GKEK) and a group key confirmation key (GKCK) are also generated based on the common nonce and are used to encrypt and sign the GDLMK so that base stations do not have access to the GDLMK. Also disclosed is a method for selecting a key management suite (KMS) to generate temporal keys. A KMS index (KMSI) may be set according to a selected KMS, transmitted to another WTRU and used to establish a direct link.
摘要:
A wireless communication device is configured as an in-home node-B (H(e)NB). The H(e)NB is configured to perform a locking function to control modification of carrier and user controlled parameters, and also configured to detect a change in location.
摘要:
A method for multicasting a packet begins by providing a buffer for each of two user equipments (UEs) in communication with a base station. A determination is made whether there is a previously unsent packet at the base station. A second determination is made whether both UE buffers are non-empty. A non-empty buffer is flushed if there is no previously unsent packet and if one of the buffers is non-empty. A packet is selected to be transmitted if there is a previously unsent packet or if both buffers are non-empty. The buffers are updated based on feedback received from the UEs.
摘要:
A wireless communications device may be configured to perform integrity checking and interrogation with a network entity to isolate a portion of a failed component on the wireless network device for remediation. Once an integrity failure is determined on a component of the device, the device may identify a functionality associated with the component and indicate the failed functionality to the network entity. Both the wireless network device and the network entity may identify the failed functionality and/or failed component using a component-to-functionality map. After receiving an indication of an integrity failure at the device, the network entity may determine that one or more additional iterations of integrity checking may be performed at the device to narrow the scope of the integrity failure on the failed component. Once the integrity failure is isolated, the network entity may remediate a portion of the failed component on the wireless communications device.
摘要:
A method and apparatus are described for maintaining communications connectivity for client applications that send keep-alive messages and network applications that send client-alive (i.e., “are you there?”) messages. The client applications may register with a client proxy provided in an operating system (OS) of a wireless transmit/receive unit (WTRU) and indicate a respective keep-alive message signaling rate. The network applications may register with a network proxy provided in an OS of a network node and indicate a respective client-alive message signaling rate. The client proxy and/or the network proxy may, respectively, register and prioritize keep-alive and/or client-alive message requirements, determine an optimal signaling rate based on the respective keep-alive and/or client-alive message signaling rates, and generate proxy messages, (i.e., an application layer proxy keep-alive message and/or a network layer proxy client-alive message), associated with the keep-alive and/or client-alive messages. The proxy messages may be transmitted at the optimal signaling rate.