Abstract:
LCD device includes two substrates, a first and second color filters, two liquid crystal layers. The first color filters are formed on portions of the second substrate corresponding to border area The second color filters are formed on portions of the second substrate corresponding to the display area except the border area. A first liquid crystal layer between the first and the second substrate is comprised in border area, and a zero electric field is formed on the first liquid crystal layer so as to completely transmit light incident into the first liquid crystal layer therethrough. A borderline having various colors can be displayed by forming various patterns of color filters having various colors on portions of the second substrate corresponding to the border area under normally white mode, thereby producing picture frame effect while images are displayed on the screen.
Abstract:
A display device for improving a binding force between upper and lower substrates and a method of manufacturing the display device are presented. The display device includes a display panel having a display area, a sealant area enclosing the display area, a first peripheral area positioned outside the sealant area and a second peripheral area disposed between the display area and the sealant area. A gate driver is formed in the display area and the binding member is formed in the sealant area. The reflective member is formed in at least one of the first peripheral area and the second peripheral area to guide the light to the binding member and cure the binding member. With the reflective member, an increased amount of light is provided to the binding member so that the binding member is fully cured to couple the upper and lower substrates to each other.
Abstract:
A color filter substrate is provided, including a substrate, a color filter layer formed on the substrate and including color filters where at least one of the color filters has an opening that partially exposes a portion of the substrate, a planarization layer reducing a step difference between the color filter layer and the portion of the substrate exposed by the opening, and a transparent electrode formed on the planarization layer.
Abstract:
A thin film transistor array panel is provided, which includes a substrate including a display region, a chip region, and a pad region; a plurality of signal lines formed on the substrate for electrically connecting the pad region to the chip region and the display region, wherein the signal lines have pads as an end portion and the pads are formed in the pad region; an insulating layer covering the signal lines and having a plurality of contact holes exposing the portions of the signal lines; a plurality of contact assistants formed on the insulating layer and connected to the pads through the contact holes; and a plurality of connection member respectively connected to the contact assistants and formed on the insulating layer for selectively electrically connecting the signal lines, wherein the insulating layer has a boundary line formed by etching, and the boundary line is crenellated.
Abstract:
In an LCD for enhancing a reflection ratio, a second substrate faces the first substrate on which a pixel array is formed, a liquid crystal layer is interposed between the first and second substrates, an insulating layer on the first substrate includes first regions and second regions, where each of the second regions has a height difference relative to each of first regions, a base line of a first region forms an angle from about 5 to about 15 degrees with respect to a tangent line of a second region, an embossing pattern with a uniform and low stepped portion is formed by regulating an exposure amount applied to the organic insulating layer so that a reflection ratio is maximized and a distribution of the slopes of an embossing pattern is uniform, and the reflection ratio is enhanced in a specific direction by forming the embossing pattern with an asymmetric profile.
Abstract:
An array substrate includes a transparent substrate, an organic insulation layer, a pixel electrode, a reflective layer, a light blocking pattern and a switching part. The transparent substrate includes a reflective window that reflects an ambient light and a transmissive window that transmits an artificial light. The organic insulation layer disposed over the transparent substrate becomes thinner gradually at a boundary between the transmissive window and the reflective window. The pixel electrode is formed in the transmissive region. The reflective layer is disposed over the organic insulation layer of the reflective window. The light blocking pattern is disposed at the boundary between the transmissive and reflective windows to prevent a light leakage. The switching part is electrically connected to the pixel electrode to apply an image signal to the pixel electrode. Therefore, a light leakage occurring at boundary is prevented by the light blocking pattern.
Abstract:
A reflective-transmissive type liquid crystal display device and a method for fabricating the reflective-transmissive type liquid crystal display device are provided. The reflective-transmissive type liquid crystal display device includes a pixel electrode having a transparent electrode for displaying information in a dark place where light is insufficiently provided, a reflective electrode for displaying information in a place where light is sufficiently provided, and an orientation film having an orientation groove provided on an upper surface of the pixel electrode, the direction of the orientation groove being varied depending on a shape of the reflective electrode. The reflective-transmissive type liquid crystal display device prevents the generation of an afterimage, which is generated when a response speed of liquid crystal is lowered due to the impurities or ions stacked at a boundary of the reflective electrode and the transparent electrode, thereby improving quality of display.
Abstract:
A method of forming a cell identification includes forming a metal layer on a substrate, coating a photoresist material on the metal layer to form a photoresist film, exposing the photoresist film through a mask including a light-blocking pattern corresponding to a cell identification pattern, developing an exposed photoresist film, etching the metal layer using a developed photoresist film to form a metal pattern including the cell identification pattern, and irradiating a laser beam onto a symbol of the cell identification pattern.
Abstract:
In an LCD for enhancing a reflection ratio, a second substrate faces the first substrate on which a pixel array is formed, a liquid crystal layer is interposed between the first and second substrates, an insulating layer on the first substrate includes first regions and second regions, where each of the second regions has a height difference relative to each of first regions, a base line of a first region forms an angle from about 5 to about 15 degrees with respect to a tangent line of a second region, an embossing pattern with a uniform and low stepped portion is formed by regulating an exposure amount applied to the organic insulating layer so that a reflection ratio is maximized and a distribution of the slopes of an embossing pattern is uniform, and the reflection ratio is enhanced in a specific direction by forming the embossing pattern with an asymmetric profile.
Abstract:
An array substrate includes a transparent substrate, pixel electrodes, switching devices, a data line, a gate line and a light blocking pattern. The light blocking pattern corresponding to a storage electrode is disposed on the transparent substrate, and the light blocking pattern blocks a light leaked from a space between the pixel electrodes. The pixel electrodes are spaced apart from the light blocking pattern by a first distance. The data line is spaced apart from the light blocking pattern by a second distance, and the data line is disposed under a region between the pixel electrodes. The data line is electrically connected to the source electrode, and the data line has a first width. The gate line is electrically connected to the gate electrode to turn on/off the switching devices. Therefore, a black matrix is not required, thereby enhancing an aperture ratio.