Abstract:
A multi-touch optical touch panel which comprises a rectangular position-detecting surface with a length L and a width W; a first set of a plurality of light-emitting element pairs configured for emitting a plurality of light beams, wherein the first set of light-emitting element pairs are arranged at various points along a first side of the position-detecting surface in a lengthwise direction; a second set of a plurality of light-emitting elements are arranged at various points along the first side at 90 degrees with reference to the first side; two reflectors arranged along two opposed sides of the rectangular position-detecting surface in the W direction; and a first set of a plurality of light-receiving element pairs configured for receiving the plurality of light beams emitted by the first set of light-emitting element pairs, wherein the first set of light-receiving element pairs are arranged at various points along a second side of the position-detecting surface opposite to the first side in a lengthwise direction; a second set of a plurality of light-receiving elements are arranged at various points along the second side at −90 degrees with reference to the second side for receiving the plurality of light beams emitted by the second set of light-emitting elements. A control circuit is configured for causing the first set of light-emitting element pairs and the second set of light-emitting elements to emit the plurality of light beams in a predetermined order to scan the position-detecting surface, and further configured for causing the first set of light-receiving element pairs and the second set of light-receiving elements to receive the plurality of light beams, thereby forming optical paths on the position-detecting surface in a grid pattern.
Abstract:
The present invention relates to a debugging apparatus for a computer system and a method thereof. A detecting unit detects if a debugging unit connects to the computer system. When a debugging unit connects to the computer system, the detecting unit produces a detecting signal, which contains information of a bus in the computer system electrically connected with the debugging unit. Then a selection unit selects the bus electrically connected with the debugging unit according to the detecting signal. Besides, a testing unit tests the computer system and produces a power-on self-test (POST) code, so that the selected bus can be used for outputting the POST code to the debugging unit. Thereby, the present invention can choose to use the bus reserved in the computer system for outputting the POST code to the debugging unit, and hence facilitating inspection personnel to debug the computer system.
Abstract:
An operation system including a chipset and a detection unit is disclosed. The chipset includes a first circuit group receiving a plurality of operation voltages. The detection unit generates a control signal to control the first circuit group to stop accessing a memory device when an external power is abnormal. A level of the control signal switches before variation in a level of a first operation voltage among the operation voltages. The variation is induced when the external power is abnormal.
Abstract:
A communication device adopted for a multi-input multi-output orthogonal frequency division multiplexing (MIMO-OFDM) system and a method thereof are provided. The MIMO-OFDM system comprises the communication device and a corresponding communication device, and they communicate with each other. The communication device comprises a transceiving module, a singular value decomposition (SVD) operation module, and an interpolation operation module. The transceiving module receives a channel state information (CSI) from the corresponding communication device, wherein the CSI comprises CSIs of a plurality of selected subcarriers. For each of the selected subcarriers, the SVD module performs an SVD decomposition operation on the channel matrix representing the CSI of the selected subcarrier to obtain a decomposed result, wherein the decomposed result comprises a beamforming matrix, an SVD matrix, and a decoding matrix. The interpolation operation module performs interpolations on the beamforming matrices of the selected subcarriers to derive beamforming matrices of the unselected subcarriers. The interpolation operation module performs interpolations on the decoding matrixes of the selected subcarriers to derive obtain decoding matrices of the unselected subcarriers.
Abstract:
A safety navigation system applying wireless communication technology and a method therefor are provided, wherein road information transmitted by wireless communication technology is received and statistically analyzed to learn about road sections that are inconvenient for driving or cannot be passed through, so as to decelerate when driving on the road section or avoid the road section altogether when planning routes, thereby ensuring a driver's safety.
Abstract:
A method for making a structure includes depositing a solution upon a surface and irradiating the solution with microwaves to crystallize solute of the solution on the surface.