Abstract:
An electrode lead of a pacemaker includes at least one lead wire including at least one composite conductive core. The at least one composite conductive core includes at least one conductive core and at least one carbon nanotube yarn spirally wound on an outer surface of the at least one conductive core. The at least one carbon nanotube yarn includes a number of carbon nanotubes joined end to end by van der Waals attractive forces. The pacemaker includes a pulse generator and the electrode lead electrically connected to the pulse generator.
Abstract:
A method for making a carbon nanotube film structure is related. A rotator having an axis and a rotating surface is provided. A carbon nanotube film drawn from a carbon nanotube array is adhered on the rotating surface of the rotator. The rotator is rotated about the axis to wrap the carbon nanotube film on the rotating surface of the rotator to form a carbon nanotube layer. The carbon nanotube layer is cut along a direction to form the carbon nanotube film structure.
Abstract:
A method for manufacturing a transmission electron microscope (TEM) micro-grid is provided. A support ring and a sheet-shaped carbon nanotube structure precursor are first provided. The sheet-shaped carbon nanotube structure precursor is then disposed on the support ring. The sheet-shaped carbon nanotube structure precursor is cut to form a sheet-shaped carbon nanotube structure in desired shape. The sheet-shaped carbon nanotube structure is secured on the support ring.
Abstract:
An electrode lead of a pacemaker includes a metal conductive core, a carbon nanotube film, and an insulator. The metal conductive core defines an extending direction. The carbon nanotube film at least partially surrounds the metal conductive core and is electrically insulated from the metal conductive core. The insulator is located between the metal conductive core and the carbon nanotube film. The carbon nanotube film includes a plurality of carbon nanotubes substantially extending along the extending direction of the metal conductive core. A bared part is defined at one end of the electrode lead. A pacemaker using the above mentioned electrode lead is also disclosed.
Abstract:
A method for manufacturing a transmission electron microscope (TEM) micro-grid is provided. A sheet of carbon nanotube structure comprising a plurality of carbon nanotubes is first provided. Some carbon nanotubes are removed from selected portions of the sheet of carbon nanotube structure to form a plurality of electron transmission portions. Each of the electron transmission portions includes a hole defined in the sheet of carbon nanotube structure and a plurality of residual carbon nanotubes in the hole. The sheet of carbon nanotube structure having the electron transmission portions is cut into pieces to form the TEM micro-grid.
Abstract:
The present disclosure provides a digital sound projector including a first flat speaker, a second flat speaker, a connecting device and a signal input device. The connecting device pivotally connects the first flat speaker and the second flat speaker to form an angle between a surface of the first flat speaker and a surface of the second flat speaker. The angle is larger than 0 degrees and smaller than 180 degrees. The signal input device inputs electrical signals to each of the first and the second flat speakers.
Abstract:
A pacemaker is provided. The pacemaker includes a pulse generator and an electrode line connecting with the pulse generator. The electrode line includes a conductor, an insulation layer and a shielding layer. The insulation layer is located on an outer surface of the conductor. The shielding layer is located on an outer surface of the first insulation layer. The shielding layer is a carbon nanotube structure having a plurality of radioactive particles therein.
Abstract:
A defrost window includes a transparent substrate, a carbon nanotube film, a first electrode, a second electrode and a protective layer. The transparent substrate has a top surface. The carbon nanotube film is disposed on the top surface of the transparent substrate. The first electrode and the second electrode electrically connect to the carbon nanotube film and space from each other. The protective layer covers the carbon nanotube film.
Abstract:
A stereomicroscope includes a base and a vessel which is disposed on the base. The vessel includes a transparent body and a light emitting unit. The transparent body has a bottom and a sidewall. The bottom and the sidewall define an opening. The sidewall extends from a side of the bottom. The opening of the transparent body places a specimen. The light emitting unit is fixed in the sidewall of the transparent body for emitting light. The light emitted from the light emitting unit illuminates the specimen, and is substantially parallel to the bottom of the transparent body.
Abstract:
A method for fabricating a carbon nanotube film includes the following steps: providing a vacuum chamber having a carbon nanotube array therein; and pulling a carbon nanotube film out from the carbon nanotube array.