Abstract:
Variable index light extraction layers (100) that contain a plurality of microreplicated posts (120) are described. The variable index light extraction layers contain a plurality of microreplicated posts (120), a first region including a first lower-index substance (130) and a second region including a second higher-index substance (140). Optical films can use the variable index light extraction layers (100) in front lit or back lit display devices.
Abstract:
Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
Abstract:
A light redirecting film includes a first layer disposed on a second layer with structured major surfaces of the first and second layers facing each other. An optically reflective layer or a metal layer is disposed between the first and second layers. The first layer can be a hot melt adhesive layer and the second layer can be a polymeric layer. The first and second layers can be unitary layers. The first layer can be a first polymeric layer having a softening temperature T1 and the second layer can be a second polymeric layer having a softening temperature T2 greater than T1. Heating and/or applying pressure to the film changes an optical characteristic of the film by less than about 5%.
Abstract:
A composite cooling film comprises an anti soiling layer of fluorinated organic polymeric material and a reflective metal layer that is disposed inwardly of the anti soiling layer, wherein the antisoiling layer comprises a first, outwardly-facing, exposed antisoiling surface and a second, inwardly-facing opposing surface.
Abstract:
A composite cooling film (100) comprises an ultraviolet-reflective multilayer optical film (120) and a reflective microporous layer (110) secured thereto. The ultraviolet-reflective multilayer optical film (120) hat is at least 50 percent reflective of ultraviolet radiation over a majority of the wavelength range of at least 340 but less than 400 nanometers. The reflective microporous layer (110) has a continuous phase comprising a nonfluorinated organic polymer and is diffusely reflective of solar radiation over a majority the wavelength range of 400 to 2500 nanometers, inclusive. The composite cooling film (100) has an average absorbance over the wavelength range 8-13 microns of at least 0.85. An article (1200) comprising the composite cooling film (100) adhered to a substrate (1210) is also disclosed.
Abstract:
Films and articles are described comprising a microstructured surface having an array of peak structures and adjacent valleys. For improved cleanability, the valleys preferably have a maximum width ranging from 10 microns to 250 microns and the peak structures have a side wall angle greater than 10 degrees. The peak structures may comprise two or more facets such as in the case of a linear array of prisms or an array of cube-corners elements. The facets form continuous or semi-continuous surfaces in the same direction. The valleys typically lack intersecting walls. Also described are methods of making and methods of use. The microstructured surface of the article can be prepared by various microreplication techniques such as coating, injection molding, embossing, laser etching, extrusion, casting and curing a polymerizable resin; and bonding microstructured film to a surface or article with an adhesive.
Abstract:
Extended area lighting devices include a light guide and diffractive surface features on a major surface of the light guide, at least some diffractive surface features adapted to couple guided-mode light out of the light guide. The diffractive features include first and second diffractive features disposed on respective first and second portions of the major surface. A patterned light transmissive layer, including a second light transmissive medium, optically contacts the second diffractive features but not the first diffractive features. A first light transmissive medium optically contacts the first but not the second diffractive features. The first and second portions may define indicia, and the first and second diffractive features provide low distortion for viewing objects through the light guide such that the indicia is not readily apparent to users when guided-mode light does not propagate within the light guide. Optical films having such diffractive features are also disclosed.
Abstract:
An electronically switchable privacy films suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low absorption states upon application of an electric field across the transparent electrodes.
Abstract:
An electronically switchable privacy film suitable for use in display devices are described. The electronically switchable privacy film comprises a pair of mutually opposing transparent electrodes; an optically transparent microstructured layer disposed between the transparent electrodes, the microstructured layer comprising a plurality of microstructured ribs extending across a surface thereof such that the microstructured ribs form an alternating series of ribs and channels; and electronically switchable material disposed in the channels, the electronically switchable material being capable of modulation between high and low light scattering states upon application of an electric field across the transparent electrodes.