Abstract:
Disclosed is a solar cell module, which comprises a solar cell module comprising a light transmitting element, a front encapsulant layer, a plurality of solar cells spaced from each other, a back encapsulant layer, and an encapsulation backsheet disposed in the module's thickness direction, the plurality of solar cells together forming a matrix which comprises a plurality of solar cell strings parallel with each other, each solar cell string being made up of a plurality of solar cells connected in series, there being a string gap formed between every two adjacent solar cell strings, and there being a cell gap formed between adjacent solar cells in each solar cell string, wherein the solar cell module further comprises a plurality of light redirecting films each of which comprises an optical structure, the light redirecting films being disposed on the solar cells' back surfaces opposite to their light receiving surfaces or the encapsulation backsheet's surface within the solar cell module, such that they spatially correspond to the string gaps and/or the cell gaps, and the optical structures being disposed to face the solar cell's back surfaces, such that the optical structures reflect light toward the interface between the light transmitting element and air, and the light is subsequently totally internally reflected back to the light receiving surfaces of the solar cells.
Abstract:
A system for converting and attaching material strips to a substrate includes a dispenser configured to advance an elongated tape having length l1 and width w1 with l1>w1 relative to a surface of a substrate. A cutting tool cuts the elongated tape transversely along the width w1 of the tape to produce a strip having length l2 and width w2. During the cutting, a portion of the cutting Stool pushes a first surface of the strip against a gripper while cutting the tape. The gripper holds the first surface of the strip against the gripper while moving to position an opposing, second surface of the strip over the surface of the substrate. The gripper releases the strip after positioning the strip.
Abstract:
A light redirecting film defining a longitudinal axis, and including a base layer, an ordered arrangement of a plurality of microstructures, and a reflective layer. The microstructures project from the base layer, and each extends across the base layer to define a corresponding primary axis. The primary axis of at least one of the microstructures is oblique with respect to the longitudinal axis. The reflective layer is disposed over the microstructures opposite the base layer. When employed, for example, to cover portions of a PV module tabbing ribbon, or areas free of PV cells, the films of the present disclosure uniquely reflect incident light.
Abstract:
Reflective microstructured films include a base layer, and an ordered arrangement of a plurality of microstructures projecting from the base layer. The microstructures have rounded peaks defined by an radius of curvature. Additionally, the micro-structures include a reflective layer. These reflective microstructured films can be used in solar modules.
Abstract:
A light redirecting film includes a first layer disposed on a second layer with structured major surfaces of the first and second layers facing each other. An optically reflective layer or a metal layer is disposed between the first and second layers. The first layer can be a hot melt adhesive layer and the second layer can be a polymeric layer. The first and second layers can be unitary layers. The first layer can be a first polymeric layer having a softening temperature T1 and the second layer can be a second polymeric layer having a softening temperature T2 greater than T1. Heating and/or applying pressure to the film changes an optical characteristic of the film by less than about 5%.
Abstract:
An automated photovoltaic (PV) subassembly manufacturing method involves in-line cutting of material strips. A tape is cut longitudinally into multiple strips. The strips are separated and guided into spaced apart positions relative to a surface of the PV cell subassembly comprising one or more PV cells. The multiple strips remain attached to the tape while the strips are guided to the spaced apart positions. The multiple strips are positioned at attachment locations on the surface of a PV cell subassembly.
Abstract:
A polymer coated conductive ribbon is described herein, wherein the polymer coated conductive ribbon consists essentially of a smooth conductive member having a defined width and thickness substantially enclosed in an insulating polymeric sheath, wherein the insulating polymeric sheath comprises a thermoplastic insulating polymer as a first storage modulus (G′) is above 0.2 MPa at 40° C. and a second storage modulus below 0.05 MPa at 160° C.
Abstract:
A light redirecting film defining a longitudinal axis, and including a base layer, an ordered arrangement of a plurality of microstructures, and a reflective layer. The microstructures project from the base layer, and each extends across the base layer to define a corresponding primary axis. The primary axis of at least one of the microstructures is oblique with respect to the longitudinal axis. The reflective layer is disposed over the microstructures opposite the base layer. When employed, for example, to cover portions of a PV module tabbing ribbon, or areas free of PV cells, the films of the present disclosure uniquely reflect incident light.
Abstract:
Reflective microstructured films include a base layer, and an ordered arrangement of a plurality of microstructures projecting from the base layer. The microstructures have a cross section with at least two sides, at least one of these sides is a curved surface. Each curved surface is defined by an angle of curvature. Additionally, the microstructures include a reflective layer. These reflective microstructured films can be used in solar modules.
Abstract:
A light redirecting film includes a first layer disposed on a second layer with structured major surfaces of the first and second layers facing each other. An optically reflective layer or a metal layer is disposed between the first and second layers. The first layer can be a hot melt adhesive layer and the second layer can be a polymeric layer. The first and second layers can be unitary layers. The first layer can be a first polymeric layer having a softening temperature T1 and the second layer can be a second polymeric layer having a softening temperature T2 greater than T1. Heating and/or applying pressure to the film changes an optical characteristic of the film by less than about 5%.