Abstract:
A computer-implemented method and system are described for deblurring an image. The method may include accessing an image having a first blurred region and a second blurred region, and generating a first blur kernel for the first blurred region and a second blur kernel for the second blurred region. Thereafter, the first blur kernel is positioned with respect to the first blurred region, and the second blur kernel is positioned with respect to the second blurred region based on the position of the first blur kernel. The image is then deblurred by deconvolving the first blurred region with the first blur kernel, and deconvolving the second blurred region with the second blur kernel.
Abstract:
A computer-implemented method and system are described for deblurring an image. The method may include accessing an image having a first blurred region and a second blurred region, and generating a first blur kernel for the first blurred region and a second blur kernel for the second blurred region. Thereafter, the first blur kernel is positioned with respect to the first blurred region, and the second blur kernel is positioned with respect to the second blurred region based on the position of the first blur kernel. The image is then deblurred by deconvolving the first blurred region with the first blur kernel, and deconvolving the second blurred region with the second blur kernel.
Abstract:
Embodiments of the present invention provide systems, methods, and computer storage media directed towards automatic selection of regions for blur kernel estimation. In one embodiment, a process divides a blurred image into a regions. From these regions a first region and a second region can be selected based on a number of edge orientations within the selected regions. A first blur kernel can then be estimated based on the first region and a second blur kernel can be estimated for the second region. The first and second blur kernel can then be utilized to respectively deblur a first and second portion of the image to produce a deblurred image. Other embodiments may be described and/or claimed.
Abstract:
A simulated tracking shot is generated from an image sequence in which a foreground feature moves relative to a background during capturing of the image sequence. The background is artificially blurred in the simulated tracking shot in a spatially-invariant manner corresponding to foreground motion relative to the background during a time span of the image sequence. The foreground feature can be substantially unblurred relative to a reference image selected from the image sequence. A system to generate the simulated tracking shot can be configured to derive spatially invariant blur kernels for a background portion by reconstructing or estimating a 3-D space of the captured scene, placing virtual cameras along a foreground trajectory in the 3-D space, and projecting 3-D background points on to the virtual cameras.
Abstract:
A computer-implemented method and system are described for deblurring an image. The method may include accessing an image having a first blurred region and a second blurred region, and generating a first blur kernel for the first blurred region and a second blur kernel for the second blurred region. Thereafter, the first blur kernel is positioned with respect to the first blurred region, and the second blur kernel is positioned with respect to the second blurred region based on the position of the first blur kernel. The image is then deblurred by deconvolving the first blurred region with the first blur kernel, and deconvolving the second blurred region with the second blur kernel.
Abstract:
A computer-implemented method and apparatus are described for automatically selecting a region in a blurred image for blur kernel estimation. The method may include accessing a blurred image and defining a size for each of a plurality of regions in the image. Thereafter, metrics for at least two of the plurality of regions are determined, wherein the metrics are based on a number of edge orientations within each region. A region is selected from the plurality of regions based on the determined metrics, and a blur kernel for deblurring the blurred image is then estimated for the selected region. The blurred image is then deblurred using the blur kernel.
Abstract:
An image de-blurring system obtains a blurred input image and generates, based on the blurred input image, a blur kernel. The blur kernel is an indication of how the image capture device was moved and/or how the subject captured in the image moved during image capture, resulting in blur. Based on the blur kernel and the blurred input image, a de-blurred image is generated. The blur kernel is generated based on sharp versions of the blurred input image predicted using a data-driven approach based on a collection of prior edges.
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two-two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.
Abstract:
Systems and methods are provided for providing improved de-noising image content by using directional noise filters to accurately estimate a blur kernel from a noisy blurry image. In one embodiment, an image manipulation application applies multiple directional noise filters to an input image to generate multiple filtered images. Each of the directional noise filters has a different orientation with respect to the input image. The image manipulation application determines multiple two-dimensional blur kernels from the respective filtered images. The image manipulation application generates a two-two-dimensional blur kernel for the input image from the two-dimensional blur kernels for the filtered images. The image manipulation application generates a de-blurred version of the input image by executing a de-blurring algorithm based on the two-dimensional blur kernel for the input image.