Abstract:
Detecting force and touch using FTIR and capacitive location. FTIR determines applied force by the user's finger within infrared transmit lines on a touch device. A pattern of such lines determine optical coupling with the touch device. Capacitive sensing can determine (A) where the finger actually touches, so the touch device more accurately infers applied force; (B) whether finger touches shadow each other; (C) as a baseline for applied force; or (D) whether attenuated reflection is due to a current optical coupling, or is due to an earlier optical coupling, such as a smudge on the cover glass. If there is attenuated reflection without actual touching, the touch device can reset a baseline for applied force for the area in which that smudge remains. Infrared transmitters and receivers are positioned where they are not visible to a user, such as below a frame or mask for the cover glass.
Abstract:
A compliant material, such as a conductive foam, is positioned in the dielectric or capacitive gap between drive and sense electrodes and/or other conductive elements of a capacitive and/or other force sensor, such as a TFT or other display element and a sensor assembly. The compliant material prevents damage by preventing and/or cushioning contact. The compliant material may be conductive. By being conductive and being positioned between the electrodes while still being separated from one or more of the electrodes, the compliant material also shortens the effective electrical distance between the electrodes. As a result, the force sensor may be more sensitive than would otherwise be possible while being less vulnerable to damage.
Abstract:
A force-sensitive device for electronic device. The force inputs may be detected by measuring changes in capacitance, as measured by surface flex of a device having a flexible touchable surface, causing flex at a compressible gap within the device. A capacitive sensor responsive to changes in distance across the compressible gap. The sensor can be positioned above or below, or within, a display element, and above or below, or within, a backlight unit. The device can respond to bending, twisting, or other deformation, to adjust those zero force measurements. The device can use measure of surface flux that appear at positions on the surface not directly the subject of applied force, such as when the user presses on a part of the frame or a surface without capacitive sensors.
Abstract:
A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
Abstract:
An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
Abstract:
An input device can be integrated within an electronic device and/or operably connected to an electronic device through a wired or wireless connection. The input device can include one or more force sensors positioned below a cover element of the input device or an input surface of the electronic device. The input device can include other components and/or functionality, such as a biometric sensor and/or a switch element.
Abstract:
An input/output device for a computing device including one or more touch sensors and one or more force sensors. The touch sensors sense data including one or more locations at which a contact or near-contact occurs. The force sensor sense data including a measure of an amount of force presented at the one or more locations at which a contact occurs. The touch sensors and the force sensors responsive to signals occurring in response to whether the signals are in response to contact or in response to an amount of force. The input/output device also includes one or more circuits coupled to the touch sensors and to the force sensors, and capable of combining information from both sensors.
Abstract:
An electronic device may have a housing in which components such as a display are mounted. A strain gauge may be mounted on a layer of the display such as a cover layer or may be mounted on a portion of the housing or other support structure. The layer of material on which the strain gauge is mounted may be configured to flex in response to pressure applied by a finger of a user. The strain gauge may serve as a button for the electronic device or may form part of other input circuitry. A differential amplifier and analog-to-digital converter circuit may be used to gather and process strain gauge signals. The strain gauge may be formed form variable resistor structures that make up part of a bridge circuit that is coupled to the differential amplifier. The bridge circuit may be configured to reduce the impact of capacitively coupled noise.
Abstract:
Systems for detecting an amount and/or location of a force applied to a device using a piezoelectric film are provided. One example system can include a transparent piezoelectric film for generating an electric charge in response to a deformation of the film. Electrodes positioned on opposite surfaces of the piezoelectric film can be used to detect the generated electric charge and determine an amount and/or location of force applied to the film based on the generated electric charge. In another embodiment, the system can include a capacitive touch sensor for determining a location of a touch event on the device.
Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.