Abstract:
A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
Abstract:
A strain-responsive sensor incorporating a strain-sensitive element is disclosed. The strain-sensitive element includes a matched-pair of resistive structures disposed on opposite sides of a substrate. One resistive structure of the matched pair is coupled to a crossover, either a physical crossover or a soft crossover, such that current within the resistive structures of the matched pair flows in the same direction.
Abstract:
An electronic device has a force sensor that determines a measure of applied force from a user contacting a cover glass of the device. In one embodiment, a frame at least partially encloses an interior of the electronic device and has an open end. A cover glass covers the open end of the frame and is movably connected to the frame to allow movement of the cover glass in response to one or more forces applied to an external surface of the cover glass. A plurality of strain probes is positioned under the cover glass, between the cover glass and the frame, and is arranged to output a plurality of strain signals responsive to the one or more forces applied to the cover glass. A force processing module is configured to at least calculate an amount of force applied to the cover glass based on the plurality of stain signals.
Abstract:
An input/output device for a computing device including one or more touch sensors and one or more force sensors. The touch sensors sense data including one or more locations at which a contact or near-contact occurs. The force sensor sense data including a measure of an amount of force presented at the one or more locations at which a contact occurs. The touch sensors and the force sensors responsive to signals occurring in response to whether the signals are in response to contact or in response to an amount of force. The input/output device also includes one or more circuits coupled to the touch sensors and to the force sensors, and capable of combining information from both sensors.
Abstract:
Systems for detecting an amount and/or location of a force applied to a device using a piezoelectric film are provided. One example system can include a transparent piezoelectric film for generating an electric charge in response to a deformation of the film. Electrodes positioned on opposite surfaces of the piezoelectric film can be used to detect the generated electric charge and determine an amount and/or location of force applied to the film based on the generated electric charge. In another embodiment, the system can include a capacitive touch sensor for determining a location of a touch event on the device.
Abstract:
An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
Abstract:
A force sensing device for computer or electronic devices. The force sensing device is configured to determine an amount of force applied, and changes in amounts of force applied, by the user when contacting a device, such as a touch device, and which can be incorporated into devices using touch recognition, touch elements of a graphical user interface, and touch input or manipulation in an application program. Additionally, the force sensing device may determine an amount of force applied, and changes in amounts of force applied, by the user when contacting a device, such as a touch device, and in response thereto, provide additional functions available to a user of a touch device, track pad, or the like.
Abstract:
A force sensor is disclosed. The force sensor includes a force-sensitive structure that compensates for temperature and other environmental changes through the use of a strain-sensitive element and one or more reference elements. An array of such force-sensitive structures forms a force-sensing layer.
Abstract:
Systems and methods related to piezoelectric based force sensing in touch devices are presented. One embodiment, for example, may take the form of an apparatus including a touch device having a deformable device stack and a piezoelectric element positioned relative to the deformable device stack such that the piezoelectric element deforms with the deformable stack. Deformation of the piezoelectric element generates a signal having a magnitude discernable as representative of an amount of force applied to the touch device.
Abstract:
A force sensor is disclosed. The force sensor includes a force-sensitive structure that compensates for temperature and other environmental changes through the use of a strain-sensitive element and one or more reference elements. An array of such force-sensitive structures forms a force-sensing layer.