Abstract:
The present disclosure relates generally to systems and methods that may reduce a reduction in visual artifacts related to hysteresis of a light emitting diode (LED) electronic display. In one example, an electronic device may include a controller. The controller is may provide a signal to a pixel of a display of the electronic device while at least a portion of the display is turned off. The signal may include a first current and a second current. The first current may be designed to increase an ambient temperature corresponding to the pixel. The second current may be generated as part of an active panel conditioning operation. By applying the first current and the second current, hysteresis settling times from the pixel may improve, therefore improving speeds of sensing and compensation operations of the electronic device.
Abstract:
An electronic display row drivers or column drivers that send reference currents or voltages to microdrivers to be used to drive micropixels to particular levels. The microdrivers, in turn, ship current to micropixels that display images based at least in part on the shipped current.
Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
Abstract:
An electronic device includes one or more unit pixels with a first node, a second node, and a third node. The device includes light-emitting-diode (LED) voltage (Vled) sensing circuitry, that senses Vled of the one or more unit pixels, by: sampling a charge of a capacitor of the one or more unit pixels, transitioning from the sampling, and reading out the Vled based upon a change in the charge of the capacitor, such that an operation of the unit pixel may be modified based upon the Vled.
Abstract:
A mobile electronic device includes a display having an active array and a reference array. The active array includes a pixel and the reference array includes a reference pixel. The mobile electronic device also includes processing circuitry communicatively coupled to the display. The processing circuitry is configured to instruct the active array to drive the pixel based at least in part on a current-voltage relationship of the pixel and a reference current-voltage relationship of the reference pixel.
Abstract:
Devices and methods for reducing or eliminating image artifacts are provided. By way of example, a display panel includes a pixels including pixel electrodes configured to receive an image data signal, and common electrodes (VCOMs) configured to receive a common voltage signal. The display panel includes a source driver, which includes a first digital to analog converter (DAC) configured to generate a gamma voltage signal to provide a first adjustment to the image data signal, and a second DAC configured to generate an error correction voltage signal to provide a second adjustment to the image data signal. The second adjustment is configured to adjust the image data signal to compensate for an operational characteristic difference between row pixels and column pixels of the display panel. The source driver includes an output buffer to supply the image data signal to the pixel electrodes.
Abstract:
An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
Abstract:
A system, method, and device for increasing uniformity between displays incorporating components from different manufacturers. Incorporating components from different manufactures in different displays may cause the different displays to appear differently even under similar conditions. By modifying the operating parameters used to drive the display according to performance characteristics for various conditions, displays incorporating components from different manufacturers may be configured to produce a substantially similar picture under similar conditions. The various conditions may include stimulus information, such as temperature or touch activity.
Abstract:
One embodiment of an apparatus to control and sense a voltage through a single node can include a comparator to monitor single node voltage, a transistor to discharge voltage through the single node and control logic. The control logic can have at least two operational phases when actively controlling the voltage through the single node. In a first phase, the control logic can configure the comparator to determine if the single node voltage is greater than a reference voltage. In a second phase, the control logic can configure the transistor to discharge voltage through the single node when the comparator has previously indicated that the single node voltage is greater than a reference voltage. The control logic can alternatively execute first and second phases to discharge the voltage to a predetermined level.
Abstract:
An electronic device may be provided that has a display. The display may produce light using a backlight unit or using an array of light-emitting display pixels. An ambient light sensor may be mounted under an active area of the display to measure ambient light that is transmitted through the display. The display may be periodically disabled to prevent the display from producing light that interferes with the ambient light sensor. Display pixels may be coupled to a common cathode switch that can be periodically opened or the backlight in a display with a backlight can be periodically turned off. Control circuitry for periodically disabling the display while enabling the ambient light sensor may be implemented using a display driver integrated circuit mounted to a display.