摘要:
A control system for an internal combustion engine is disclosed. The engine is provided with at least one fuel injection valve for injecting fuel supplied from a fuel tank into an intake pipe of the engine. The fuel injection amount is controlled by controlling the valve opening period of the at least one fuel injection valve. A pressure difference between the pressure of fuel to be supplied to the at least one fuel injection valve and the pressure in the fuel tank is controlled such that the difference is at a constant value. The pressure in the fuel tank and the pressure in the intake pipe are detected. A correction amount is calculated according to the pressure in the fuel tank and the pressure in the intake pipe, and the valve opening period of the at least one fuel injection valve is corrected using the calculated correction amount. A required amount of fuel to be supplied to the engine is calculated according to an operating condition of the engine. The change rate of the correction amount is corrected according to the required fuel amount.
摘要:
An air-fuel ratio control system for an internal combustion engine has a sensor which detects the air-fuel ratio of exhaust gases in an exhaust passage of the engine emitted from a plurality of cylinders. An air-fuel ratio of a mixture supplied to each of a plurality of cylinders is estimated, based on the detected air-fuel ratio and a model representative of a behavior of the exhaust passage. A cylinder-by-cylinder air-fuel ratio control amount is calculated for use in controlling the air-fuel ratio of the mixture supplied to the each of the cylinders in a feedback manner responsive to the estimated air-fuel ratio of the mixture such that the estimated air-fuel ratio of the mixture supplied to the each of the cylinders is converged to a desired air-fuel ratio. A learned value of the cylinder-by-cylinder air-fuel ratio control amount is calculated. When the difference between the detected air-fuel ratio and the estimated air-fuel ratio of the mixture supplied to the each of the cylinder is larger than a predetermined value, the calculation of the learned value of the cylinder-by-cylinder air-fuel ratio control amount is inhibited.
摘要:
A fuel injection control system for an internal combustion engine includes an ECU which carries out adherent fuel-dependent correction by calculating an amount of fuel to be injected into the intake passage such that a sum of a direct supply amount of fuel directly drawn into the combustion chamber of the engine without adhering to the wall surface of the intake passage out of a whole amount of fuel injected into the intake passage, and a carried-off amount of fuel carried off the wall surface of the intake passage into the combustion chamber out of fuel adhering to the wall surface of the intake passage is equal to a required fuel amount for the engine. The starting condition of the engine is detected by sensors, and operation of the adherent fuel-dependent correction control is limited during the starting condition of the engine. The carried-off fuel amount is set to a predetermined value, based on at least one operating parameter of the engine when the engine has shifted from the starting condition to the basic operating condition after starting.
摘要:
There is provided an internal EGR control device for an internal combustion engine, which, even when a change in the actual valve timing of exhaust valves is caused by aging, is capable of properly controlling an internal EGR amount while compensating for an adverse influence caused by the change, and thereby properly controlling the temperature within the cylinder. The internal EGR control device 1 sets a target internal EGR amount EGRINCMD which serves a target of the internal EGR amount, according to detected operating conditions, NE and PMCMD, of the engine 3, and calculates internal energy QACT possessed by burned gases, which is determined according to the amount and temperature of the burned gases. Further, the target internal EGR amount EGRINCMD is corrected according to the calculated internal energy, and the valve-closing timing of the exhaust valve 9 is calculated according to the corrected internal EGR amount EGRIN. Further, the variable valve mechanism 60 is controlled based on the calculated valve-closing timing of the exhaust valve 9.
摘要:
The present invention relates to a physical quantity measuring instrument and signal processing method thereof capable of reducing noise components and improving reliability without increasing size or cost of the circuit. A physical quantity detecting unit (11) has signal detecting components for detecting a plurality of signals based on a desired physical quantity and detects the desired physical quantity. A signal processing unit (12) executes signal processing of the signals detected on the individual detecting axes by the physical quantity detecting unit (11) for linearly combining the signals in different combinations with time. An arithmetic processing unit (13) combines and calculates a plurality of signals based on the physical quantity associated with the physical quantity detecting unit (11) from the signal data output by the signal processing unit (12). It can linearly combine the signals from the plurality of detecting axes in different combinations with time, output them, and obtain desired signal components whose noise components are reduced by calculating the outputs.
摘要:
The present invention relates to a traveling direction measuring apparatus usable as a pedestrian navigation system in locations where it is difficult to obtain high positioning accuracy such as inside buildings or around multistory buildings where a GPS cannot be used. An acceleration detecting section (1) detects 3-axes acceleration of the traveling direction measuring apparatus, which varies with the walking of the pedestrian. An acceleration data acquiring section (2) obtains 3-axes acceleration data repeatedly by the number of prescribed times or more, said 3-axes acceleration data varies with the walking of the pedestrian. A first gravity acceleration calculating section (3) calculates, when the pedestrian is walking with holding the traveling direction measuring apparatus in a generally fixed attitude, gravity acceleration by averaging acceleration data sets during several steps obtained by the acceleration data acquiring section (2). A first moving direction estimating section (4) estimates the moving direction of the pedestrian from frequency components corresponding to the duration of one step of the acceleration data sets projected on a plane perpendicular to the gravity acceleration calculated by the first gravity acceleration calculating section (3).
摘要:
A reference point defined on a two dimensional or three dimensional orthogonal coordinate space and scale reference of respective axes are estimated based on a distribution on the three dimensional orthogonal coordinate space at the time when respective axial components of an acceleration data group comprised of plural acceleration data including multi-axial components and a importance group pertaining to the acceleration data group, and the respective acceleration data are corrected based on the estimated reference point and scale reference of the respective axes.
摘要:
A traveling direction measuring apparatus including 3-axes acceleration detecting means for detecting acceleration, and acceleration data acquiring means for repeatedly obtaining 3-axes acceleration data, said 3-axes acceleration varying with walking of a pedestrian, the traveling direction measuring apparatus including means for calculating, when the pedestrian is walking with holding said traveling direction measuring apparatus in a generally fixed attitude, gravity acceleration by averaging acceleration data sets during several steps obtained by said acceleration data acquiring means, means for calculating frequency components corresponding to duration of one step of the acceleration data sets projected on a plane perpendicular to the calculated gravity acceleration, and means for estimating a moving direction of the pedestrian seen from a terminal coordinate system associated with said traveling direction measuring apparatus according to frequency components.
摘要:
[Object] Conventionally, measures for securing stability of a ship when it is damaged are required.[Solution] The invention is characterized by having a remotely openable seawater inlet means provided to a lowermost watertight deck that forms a void space at the bottom of the ship. Thereby, when a side shell plate or the like of the ship is damaged and seawater enters the ship, the seawater that has entered the ship can be introduced into the void space by opening the seawater inlet means provided to the lowermost watertight deck, so that the void space, which usually provides a huge auxiliary buoyancy, can be made to function as a sort of a seawater ballast tank, whereby the ship's stability can be recovered.
摘要:
The present invention relates to a traveling direction measuring apparatus usable as a pedestrian navigation system in locations where it is difficult to obtain high positioning accuracy such as inside buildings or around multistory buildings where a GPS cannot be used. An acceleration detecting section (1) detects 3-axes acceleration of the traveling direction measuring apparatus, which varies with the walking of the pedestrian. An acceleration data acquiring section (2) obtains 3-axes acceleration data repeatedly by the number of prescribed times or more, said 3-axes acceleration data varies with the walking of the pedestrian. A first gravity acceleration calculating section (3) calculates, when the pedestrian is walking with holding the traveling direction measuring apparatus in a generally fixed attitude, gravity acceleration by averaging acceleration data sets during several steps obtained by the acceleration data acquiring section (2). A first moving direction estimating section (4) estimates the moving direction of the pedestrian from frequency components corresponding to the duration of one step of the acceleration data sets projected on a plane perpendicular to the gravity acceleration calculated by the first gravity acceleration calculating section (3).