摘要:
A semiconductor-manufacturing device is equipped with a load-lock chamber and a reactor, which are directly connected, wherein a semiconductor wafer is transferred by a transferring arm provided inside the load-lock chamber from the load-lock chamber onto a susceptor provided inside the reactor. The device includes a buffer mechanism for keeping a semiconductor wafer standing by inside the reactor. The buffer mechanism includes at least two supporting means, which are provided around the susceptor to support the semiconductor wafer and which rotate in a horizontal direction, a shaft means for supporting the supporting means in a vertical direction, a rotating mechanism for rotating the supporting means coupled to the shaft means, and an elevating means for moving the shaft means up and down.
摘要:
A method for positioning wafers in dual wafer transport, includes: simultaneously moving first and second wafers placed on first and second end-effectors to positions over lift pins protruding from first and second susceptors, respectively; and correcting the positions of the first and second wafers without moving any of the lift pins relative to the respective susceptors or without moving the lift pins relative to each other, wherein when the first and second wafers are moved to the respective positions, the distance between the first wafer and tips of the lift pins of the first susceptor is substantially smaller than the distance between the second wafer and tips of the lift pins of the second susceptor.
摘要:
A semiconductor processing apparatus includes: a reaction chamber; a susceptor disposed in the reaction chamber for placing a substrate thereon and having through-holes in an axial direction of the susceptor; lift pins slidably disposed in the respective through-holes for lifting the substrate over the susceptor; and a means for reducing contact resistance between the lift pins and the respective through-holes.
摘要:
Semiconductor processing equipment that has increased efficiency, throughput, and stability, as well as reduced operating cost, footprint, and faceprint is provided. Other than during deposition, the atmosphere of both the reaction chamber and the transfer chamber are evacuated using the transfer chamber exhaust port, which is located below the surface of the semiconductor wafer. This configuration prevents particles generated during wafer transfer or during deposition from adhering to the surface of the semiconductor wafer. Additionally, by introducing a purge gas into the transfer chamber during deposition, and by using an insulation separating plate 34, the atmospheres of the transfer and reaction chambers can be effectively isolated from each other, thereby preventing deposition on the walls and components of the transfer chamber. Finally, the configuration described herein permits a wafer buffer mechanism to be used with the semiconductor processing equipment, thereby further increasing throughput and efficiency.
摘要:
The present application provides a PECVD reaction chamber for processing semiconductor wafers comprising a susceptor for supporting a semiconductor wafer inside the reaction chamber wherein the susceptor comprises a plurality vertical through-bores, a moving means for moving the susceptor vertically between at least a first position and a second position, wafer-lift pins passing through the through-bores wherein the lower end of each wafer pin is attached to a lift member, and a lift member linked with an elevating mechanism for moving the wafer-lift pins vertically. The disclosed apparatus reduces contamination on the underside of the semiconductor wafer.
摘要:
The equipment comprises a semiconductor-processing device in which a load-lock chamber, a transfer chamber and a reaction chamber are modularized into, a main frame, a stand-alone chamber frame on which the semiconductor-processing device is placed, a sliding mechanism for enabling attaching/removing of the chamber frame to/from the main frame smoothly, and a positioning mechanism for fixing a position of the chamber frame. This enables the processing device to be attached and removed at will. The method comprises pulling out from the main frame the chamber frame, on which the modularized semiconductor-processing device is placed; forming a maintenance space inside the main frame; maintaining the semiconductor-processing device and peripherals attached in the vicinity of the main frame, and putting the chamber frame with the processing device back into the main frame.
摘要:
Semiconductor processing equipment that has increased efficiency, throughput, and stability, as well as reduced operating cost, footprint, and faceprint is provided. Other than during deposition, the atmosphere of both the reaction chamber and the transfer chamber are evacuated using the transfer chamber exhaust port, which is located below the surface of the semiconductor wafer. This configuration prevents particles generated during wafer transfer or during deposition from adhering to the surface of the semiconductor wafer. Additionally, by introducing a purge gas into the transfer chamber during deposition, and by using an insulation separating plate 34, the atmospheres of the transfer and reaction chambers can be effectively isolated from each other, thereby preventing deposition on the walls and components of the transfer chamber. Finally, the configuration described herein permits a wafer buffer mechanism to be used with the semiconductor processing equipment, thereby further increasing throughput and efficiency.
摘要:
There is provided an aligner apparatus and method which can align a semiconductor substrate without contaminating a rear surface. The aligner apparatus for arbitrarily aligning the circular semiconductor substrate having a notch or “orifla” at an edge portion includes at least three spindle units rotatably axially supported by a plate, holding units for holding the semiconductor substrate, attached to respective tip ends of the spindle units, a rotation mechanism for rotating the spindle units, and a sensor for detecting the notch or “orifla”. An edge portion of the semiconductor substrate is brought into contact with the respective holding units, so that the semiconductor substrate is held. When the spindle units rotate, the semiconductor substrate held by the holding units rotates around its axial line.