Abstract:
A camera acquires a 4D light field of a scene. The camera includes a lens and sensor. A mask is arranged in a straight optical path between the lens and the sensor. The mask including an attenuation pattern to spatially modulate the 4D light field acquired of the scene by the sensor. The pattern has a low spatial frequency when the mask is arranged near the lens, and a high spatial frequency when the mask is arranged near the sensor.
Abstract:
An optical emitter and an optical sensor are arranged at locations in a scene. A physical mask is arranged between the emitter and sensor to modulate directional electromagnetic signals from the emitter spatially. The modulated signals are analyzed to determine geometric properties at the location in the scene.
Abstract:
A method displays an output image on an object. A set of unique markers are fixed to the object at predetermined locations. An input image of the object and the markers is acquired with a camera in a fixed physical relationship to a projector. A pose of the projector with respect to the markers is determined from the image. Then, one or more output images related to the object can be projected onto the object, at predetermine locations, according to the pose of the projector and the unique markers.
Abstract:
A position and orientation of a projector are determined from projected images. First, a homography between a camera and a planar surface, where the relationship between the camera and planar surface is fixed, is determined. Next, a known pattern is projected on the planar surface with a projector having known intrinsic parameters and an unknown position and orientation. An image of the known pattern is acquired with the camera, and a position and orientation of the projector is determined from the image using the homography and the intrinsic parameters.
Abstract:
An identification tag is formed with a single microcircuit. The microcircuit includes an optical transceiver, a radio transceiver, both connected to a memory storing an identification code. At least one of the transceivers operates in receive mode, and at least one of the transceivers operates in transmit mode. The identification code is transmitted by the transceiver operating in the transmit mode in response to receiving a predetermined signal by the transceiver operating in the receive mode.
Abstract:
A method generates a stylized image. First, a set of images is acquired of a scene. Each image is acquired under a different lighting condition. Silhouette edges are detected in the set of images. Texture regions are identified in the set of images according to the silhouette edges, and an output image is generated from a combination of the set of images wherein the silhouette edges and the texture regions are altered so as to enhance or de-emphasize selected details.
Abstract:
A camera is configured to adaptively determine camera settings. The camera includes a plurality of sensors elements configured to acquire a current image of a scene according to a current set of camera settings. A number of sensor elements having a set of desirable properties is measured. Then, a next set of camera settings that maximize an overall number of sensor elements having the set of desirable properties is determined to acquire a next better image.
Abstract:
An apparatus for projecting an output image on a display surface includes a processing unit. The processing unit includes a microprocessor, a memory and an I/O interface connected by buses. A projector sub-system coupled to the processing unit is for display output images on the display surface. A camera sub-system couple to the processing unit is for acquiring input images reflecting a geometry of the display surface. The camera sub-system is in a fixed physical relationship to the projector sub-system. Internal sensors coupled to the processing unit are for determining an orientation of the projector sub-system and the camera sub-system with respect to the display surface.
Abstract:
A method determines a largest rectangle on a display surface. A polygon L is drawn on a first depth plane having a depth z=1 in a depth buffer. A rectangle R is drawn with a predetermined aspect ratio on a second depth plane having a depth z=0. A center of projection is determined with a minimum depth z in a range [0,1] that maps the rectangle R into a largest rectangle S in the first depth plane so that the rectangle S remains completely inside the polygon L.
Abstract:
A method corrects keystoning in a projector arbitrarily oriented with respect to a display surface. An elevation angle, a roll angle, and an azimuth angle of an optical axis of the projector are measured with respect to the display surface. A planar projective transformation matrix is determined from the elevation, roll, and azimuth angles. A source image to be projected by the projector is warped according to the planar projective transformation, and then projected onto the display surface.