摘要:
An optical receiver is arranged at a location in a scene. The optical receiver includes a photo sensor configured to detect spatio-temporal modulated optical signals directed at the scene from a set of spatially dispersed optical transmitters, and to convert the optical signals from each of the optical transmitters to a corresponding electronic signal. The electronic signals can be analyzed to determine geometric properties of the location in the scene.
摘要:
An optical receiver is arranged at a location in a scene. The optical receiver includes a photo sensor configured to detect spatio-temporal modulated optical signals directed at the scene from a set of spatially dispersed optical transmitters, and to convert the optical signals from each of the optical transmitters to a corresponding electronic signal. The electronic signals can be analyzed to determine geometric properties of the location in the scene.
摘要:
An optical emitter and an optical sensor are arranged at locations in a scene. A physical mask is arranged between the emitter and sensor to modulate directional electromagnetic signals from the emitter spatially. The modulated signals are analyzed to determine geometric properties at the location in the scene.
摘要:
A system measures reflectance in a scene. A first optical sensor is configured to measure incident energy at a location in a scene. A second optical sensor is configured to measure reflected energy from the location in the scene. The incident energy and the reflected energy are analyzed to determine a photometric property at the location of the scene.
摘要:
A diffused layer serves as a source and a drain. It is formed comprised of a deep first diffused layer and a shallow second diffused layer positioned between the first diffused layer and the channel region. In the second diffused region, a distribution in a depth direction of carriers has a profile in which the concentration is more than 5.times.10.sup.18 cm.sup.-3 at the peak and is in correspondence with a carrier concentration of the semiconductor substrate at a depth less than 0.04 .mu.m. Since the second diffused layer has a high concentration, the short-channel effect can be suppressed. As the second diffused region, a solid phase diffusion source such as an impurity doped silicate glass is used.
摘要翻译:扩散层用作源极和漏极。 其形成包括位于第一扩散层和沟道区之间的深第一扩散层和浅第二扩散层。 在第二扩散区域中,载流子深度方向的分布具有在峰值处浓度大于5×10 18 cm -3的轮廓,并且与深度小于0.04μm的半导体衬底的载流子浓度相对应 m。 由于第二扩散层具有高浓度,所以可以抑制短沟道效应。 作为第二扩散区域,使用诸如杂质掺杂硅酸盐玻璃的固相扩散源。
摘要:
A data collecting system includes a data collecting device and plural data processing devices connected to the data collecting device by a cascade connection. For example, each of the data processing devices individually executes an A/D conversion and other data process, and adds data obtained by the data process to a data transmitting signal to transmit it to the subsequent cascade-connection data processing device in sequence. The data processing device at the head of the cascade connection generates the data transmitting signal including a data processing period and a communication period, and transmits it to the subsequent data processing device. Each of the data processing devices executes the data process in the data processing period, and transmits data obtained by the data process to the subsequent data processing device in the communication period on the basis of the data transmitting signal.
摘要:
A bipolar transistor has metal silicide as a base lead-out electrode instead of conventional polysilicon, and the metal silicide film extends to an edge of an etching stopper layer, to reduce an emitter resistance and restrain an occurrence of an emitter plug effect. Such bipolar transistor can be utilized in a CMOS semiconductor device. In this case, (1) commonly using a process of providing an active base region, a base lead-out electrode and a collector lead-out electrode of the bipolar transistor and a process of providing gate electrodes a MOS field effect transistor, (2) commonly using a process of adding a p-type impurity into the active base region and the base lead-out electrode and a process of executing an ion-implantation for providing high-concentration impurity diffused layers of pMOS transistors, (3) commonly using a process of providing an etching stopper layer and a process of providing side wall insulating films of gate electrodes, and (4) commonly using a silicidation process of the base lead-out electrode and the collector lead-out electrode and a silicidation process of electrodes of MOS transistors. In other embodiment of the bipolar transistor, a single insulating film exist between the base layer and the emitter electrode in the peripheral of the emitter opening. By this construction, the etching stopper film is not necessary resulting in reducing the base resistance.
摘要:
A MOS type semiconductor device has a gate whose length is 170 nm (0.17 .mu.m) or less, a junction depth of source and drain diffusion layers in the vicinity of a channel is 22 nm or less, and a concentration of impurities at the surface in the source and drain diffusion layers is made to 10.sup.20 cm.sup.-3 or more. Such structure is obtained using solid phase diffusion using heat range from 950.degree. C. to 1050.degree. C. and/or narrowing gate width by ashing or etching. The other MOS type semiconductor device is characterized in that the relationship between the junction depth x.sub.j �nm! in the source and drain diffusion layer regions and the effective channel length L.sub.eff �nm! is determined by L.sub.eff >0.69 x.sub.j -6.17.
摘要:
A semiconductor device comprises an SOI substrate formed with a mono-crystalline semiconductor layer through an embedded insulating layer on a first conductivity type semiconductor substrate; a MIS type field-effect transistor provided within a device region defined by isolating said mono-crystalline semiconductor layer with a device isolation region and having a gate electrode; an opening formed penetrating said device isolation region and said embedded insulating layer and reaching said semiconductor substrate; and a substrate electrode provided covering said opening and taken out up to the surface flush with said gate electrode. And a method of manufacturing a semiconductor device, comprises providing a device isolation region for defining a device region on a mono-crystalline semiconductor layer of an SOI substrate formed with a mono-crystalline semiconductor layer through an embedded insulation payer on a semiconductor substrate of a first conductivity type; forming an opening penetrating said device isolation region and said embedded insulation layer and reaching said semiconductor substrate; depositing polysilicon on said SOI substrate and within said opening and providing a gate electrode and a substrate electrode of said MIS type field-effect transistor by executing the patterning thereon; and implanting impurities into said gate electrode and said substrate electrode.
摘要:
In a lateral bipolar transistor, its emitter region, base region, link base region, and so forth, are made in self alignment with side walls of masks by using partly overlapping two mask patterns. Therefore, not relying on the mask alignment accuracy, these regions are made in a precisely controlled positional relation. Thus, the lateral bipolar transistor, thus obtained, is reduced in parasitic resistance of the base and parasitic junction capacitance between the emitter and the base, and alleviated in variance of characteristics caused by fluctuation of the length of a link base region, length of the emitter-base junction and relative positions of the emitter and the collector, and can be manufactured with a high reproducibility.