Abstract:
Secure secrets can be used, in one embodiment, to generate a master key. In one embodiment, a first secret value, generated and stored in a first secure element, can be used with a user's credential (e.g., a user's passcode) to generate, through a first key derivation function, a second secret value. A master key can then be generated through a second key derivation function based on the second secret value and a derived or stored secret such as a device's unique identifier.
Abstract:
Techniques are disclosed relating to secure data storage. In various embodiments, a mobile device includes a wireless interface, a secure element, and a secure circuit. The secure element is configured to store confidential information associated with a plurality of users and to receive a request to communicate the confidential information associated with a particular one of the plurality of users. The secure element is further configured to communicate, via the wireless interface, the confidential information associated with the particular user in response to an authentication of the particular user. The secure circuit is configured to perform the authentication of the particular user. In some embodiments, the mobile device also includes a biosensor configured to collect biometric information from a user of the mobile device. In such an embodiment, the secure circuit is configured to store biometric information collected from the plurality of users by the biosensor.
Abstract:
A device facilitating countersigning updates for multi-chip devices includes at least one processor configured to receive, from a collocated chip, a data item and a software update, the data item being signed using a private key corresponding to a primary entity associated with the collocated chip and the data item comprising an authentication code generated using a symmetric key corresponding to a secondary entity associated with the software update. At least one processor is further configured to verify the data item using a public key associated with the primary entity. At least one processor is further configured to verify the software update based at least in part on the authentication code and using the symmetric key corresponding to the primary entity. At least one processor is further configured to install the software update when both the data item and the software update are verified, otherwise discard the software update.
Abstract:
A jitter buffer in a Voice over LTE receiver may be influenced by radio level feedback (RLF) from both local and remote endpoints to preemptively adjust the jitter buffer delay in anticipation of predicted future losses that have a high probability of occurring. The radio events of the RLF and the scenarios that trigger the preemptive adjustments may be identified, and their use may be expressed in terms of mathematical formulas. Previously, the instantaneous jitter was derived from a weighted history of the media stream, and consequently only packets that had already been received were used to compute the instantaneous jitter to adjust the length of the buffer. By providing and using RLF from both local and remote endpoints, the anticipated delay—for packets that have not yet arrived—may be used to preemptively adjust the buffer, thereby minimizing packet loss without introducing unnecessary delay.