Abstract:
Apparatus and methods for removing jitter and stabilizing the feed back system of a torsional hinged device with minimal changes to the system. The stabilization is accomplished by introducing a selected amount of lateral motion (in addition to the rotational motion) by creating asymmetry in the oscillating device or the drive torque applied to the device.
Abstract:
System and method for adjusting an operational parameter of a component that drifts with temperature changes. The system includes a torsional hinged device that oscillates at a resonant frequency, and the resonant frequency of the device drifts or varies with temperature. Differences of a selected parameter between a drive signal and the actual selected parameter are monitored to determine changes in the resonant frequency. An output signal representative of change in the resonant frequency is used to adjust another component that also has a parameter that varies with temperature changes. The adjustment compensates for the temperature drift.
Abstract:
System and method for establishing and maintaining resonant oscillations of a torsional hinged device such as a pivotally hinged mirror. The system and methods comprise a permanent magnet mounted to the pivoting mirror that interacts with an electromagnetic coil. The magnetic coil is periodically connected and disconnected from a DC power supply in response to a series of drive pulses having a timing and duration such that the magnetic forces generated by the interaction of the permanent magnet and the electromagnetic coil maintains resonant oscillations of the device.
Abstract:
A functional surface, such as a reflective surface, is supported by a pair of torsional hinges for pivoting about a first axis which in turn is supported by a pair of anchors, according to one embodiment. The reflective surface may be driven into resonant oscillations about the first axis by inertially coupling energy to the device. According to a dual axis embodiment, the reflective surface is attached by torsional hinges to a gimbals portion which in turn is attached to the support members by a second pair of torsional hinges which are orthogonal with the first pair of hinges so as to provide for pivoting of the surface about both pairs of torsional hinges. Thus, a light source may be reflected from a reflective surface to produce a beam sweep and moved orthogonally by the gimbals portion. The devices may be etched from silicon.
Abstract:
In a laser printer which uses a scanning mirror 12 with torsional hinges 36A, 36B driven by electrical coils 30A, 30B to provide resonant pivoting, at least one sensor 84, 88 is located proximate each end of a resonant sweep or scan. Pulses or signals from the sensor indicating the passing of a sweeping or scanning light beam are connected to computational circuitry 92 in a feedback loop. This information is used to determine the center of the beam sweep. The center of the beam sweep is then aligned with the center of the photosensitive medium, such as a rotating drum 44, by adjusting the DC current provided to the drive coils.
Abstract:
A device 21 comprises a movable structure 44 having a first movable portion 70 hinged to frame portion 60 by a first pair of hinges 81, 82 spaced apart along a first axis 91. The first movable portion 70 has an edge 140 that is substantially perpendicular to the first axis and substantially parallel with and immediately adjacent to an edge 132 of the frame portion 60, such that a tolerance space 120 defined therebetween. At least one projection 122 extends from one or both of the edges 132 and/or 140. The projection 122 is adapted to limit translational motion of the first movable portion 70 relative to the frame portion 60 within the plane. The device 21 motion between the first movable portion 80 and a second pivot axis 112 with translational motion between the first movable portion 70 and the second movable portion 80 limited by a similar projection.