Abstract:
A rotor includes a first rotor core, a second rotor core, a field magnet, and a detected portion. The first rotor core includes a first core base and a plurality of first claw-shaped magnetic pole portions. The second rotor core includes a second core base and a plurality of second claw-shaped magnetic pole portions. The first and second core bases face to each other, and the first and second claw-shaped magnetic pole portions are alternately arranged in the circumferential direction. The field magnet is located between the first and second core bases in the axial direction. The field magnet has the first claw-shaped magnetic pole portion function as a first magnetic pole and has the second claw-shaped magnetic pole portion function as a second magnetic pole. A detected portion, which generates a magnetic flux, is arranged at an outer axial end surface of the first rotor core.
Abstract:
A motor includes a two-layer rotor and a two-layer stator. The two layer rotor includes an A-phase rotor and a B-phase rotor that are stacked together. When θ1 represents, in electric angle, an angle of the B-phase stator relative to the A-phase stator in a clockwise circumferential direction, and θ2 represents, in electric angle, an angle of the B-phase rotor relative to the A-phase rotor in a counterclockwise circumferential direction, θ1+|θ2|=90° is satisfied.
Abstract:
A rotor includes a first rotor core, a second rotor core, a field magnet, and an auxiliary magnet. The first rotor core includes a first core base and a plurality of first hook-shaped poles. The second rotor core includes a second core base and a plurality of second hook-shaped poles. The first and second hook-shaped poles are alternately arranged in a circumferential direction of the rotor. The field magnet is arranged between the first and second core bases in an axial direction. The field magnet cause the first hook-shaped poles to function as first poles and the second hook-shaped poles to function as second poles. The auxiliary magnet includes at least two interpolar magnet portions, which are integrally formed. Each interpolar magnet portion is arranged in a void between the first hook-shaped pole and the second hook-shaped pole and magnetized in the circumferential direction.
Abstract:
A motor includes a stator, a rotor, a case, and back-surface magnet portions. The rotor has a first rotor core, a second rotor core and a field magnet. Each of the first and second rotor cores has a core base and claw-shaped magnetic poles. The field magnet is sandwiched between the first rotor core and the second rotor core and causes the claw-shaped magnetic poles of the first rotor core and the second rotor core to function as different magnetic poles. The back-surface magnet portions include a second and a first back-surface magnet portions respectively provided on the back surfaces of the claw-shaped magnetic poles of the second rotor core and the first rotor core. Size of the second back-surface magnet portion differs from size of the first back-surface magnet portion are different from each other.
Abstract:
A rotor includes at least one of a group of one or more auxiliary magnets that are located between first and second claw poles in a circumferential direction and magnetized to be magnetic poles of the same polarity as the first and second claw poles and another group of one or more auxiliary magnets that are located on a rear side of the first and second claw poles and magnetized to have radially outer portions of the same polarity as the first and second magnetic poles. The auxiliary magnets are arranged to protrude beyond at least one of axial end surfaces of the first and second core bases.
Abstract:
A motor includes a stator, a rotor and a case. The rotor includes a first rotor core, a second rotor core, and a field magnet. Each of the first rotor core and the second rotor core includes a core base and a plurality of claw poles. The field magnet is located between the core bases. The case includes a cylindrical yoke housing and a lid. To balance magnetic flux from the first rotor core with magnetic flux from the second rotor core, the distance between the rotor and the stator is varied from the distance between the rotor and the yoke housing or the teeth of the stator are shaped to enable magnetic saturation.
Abstract:
A motor includes a rotor and a stator. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. A ratio X1:X2 of a quantity X1 of magnetic pole portions of the rotor, which is the sum of the quantity of the magnets and the quantity of the salient poles, and the quantity X2 of slots is 2n:3n (n being a natural number). The sum of a magnetic pole occupying angle θ1 of the magnet and a magnetic pole occupying angle θ2 of the salient pole is 360°. The magnetic pole occupying angle θ1 is set in a range of 180°
Abstract:
A rotor of a motor includes first and second rotor cores, a field magnet, and a commutator magnet. The first and second rotor cores each include a core base and a plurality of claw poles. The claw poles of the first rotor core and the claw poles of the second rotor core are alternately arranged in a circumferential direction. The field magnet is located between the core bases. The field magnet is magnetized in an axial direction so that the claw poles of the first rotor core and the claw poles of the second rotor core function as different magnetic poles in the circumferential direction. The commutator magnet is located on an outer circumference of the field magnet around the claw poles. The commutator magnet is magnetized so that surfaces having the same polarity face each other between the claw poles and the commutator magnet.
Abstract:
A rotor includes first and second rotor cores, a field magnet, and an annular magnet. The first and second rotor cores each include a core base and core magnetic poles. The core magnetic poles are provided on an outer peripheral portion of the core base at equal intervals. The core bases are faced with each other. The core magnetic poles are alternately arranged in a peripheral direction. The annular magnet is a resin molding product including a magnetic pole magnet portion and an inter-pole magnet portion. The annular magnet has a non-contact portion not in contact with the first and second rotor cores. A gate mark portion in injection molding of the annular magnet is arranged in the non-contact portion.
Abstract:
A motor includes a stator, a rotor, and a case. The stator includes a stator core and windings. The rotor is provided inside the stator. The rotor includes first and second rotor cores and a field magnet. The first and second rotor cores each includes a core base and claw-shaped magnetic poles. The core bases are opposed to each other and the claw-shaped magnetic poles of the first and second rotor cores are alternately disposed in a circumferential direction. The field magnet is disposed between the core bases in the axial direction. The field magnet is magnetized in the axial direction so as to cause the claw-shaped magnetic poles of the first rotor core and the second rotor core to function respectively as first magnetic poles and second magnetic poles. At least part of an end part of the case in the axial direction is made of a non-magnetic body.