Abstract:
A brushless motor includes a first rotor core, a second rotor core, and a field magnet member. The first rotor core includes primary projecting pieces arranged along a circumferential direction at equal intervals. The second rotor core has the same shape as the first rotor core, and includes secondary projecting pieces arranged along the circumferential direction at equal intervals. The secondary projecting pieces are positioned between the primary projecting pieces that are adjacent to one another in the circumferential direction. The field magnet member is arranged between the first rotor core and the second rotor core. The field magnet member is magnetized along an axial direction to generate primary magnetic poles in the primary projecting pieces, and generate secondary magnetic poles in the secondary projecting pieces. A rotor includes the first rotor core, the second rotor core, and the field magnet member.
Abstract:
A motor including a stator and a rotor. The stator includes teeth and windings. Each tooth has a distal portion defined by a radially inward side of the stator. The rotor, which is arranged inward in the radial direction from the stator, includes a rotor core, magnets, and salient poles. Each salient pole is separated by a void from the magnet that is adjacent in the circumferential direction. The distal portion of each tooth is longer than a radially outward side of each magnet.
Abstract:
A rotor with four axially stacked rotor cores, and a plurality of field magnets interposed between them. Each rotor core includes a rotor-side claw-shaped magnetic pole. Each rotor-side claw-shaped magnetic poles are respectively extending from and formed on each rotor core at equal angle intervals. Tip end surfaces of the first and third rotor-side claw-shaped magnetic pole abut against or are closely opposed to each other axially. Tip end surfaces of the second and fourth rotor-side claw-shaped magnetic poles abut against or are closely opposed to each other in the axial direction. The plurality of field magnets are magnetized in the axial direction such that the field magnets causes the first and third rotor-side claw-shaped magnetic poles to function as first magnetic poles, and cause the second and fourth rotor-side claw-shaped magnetic poles to function as second magnetic poles.
Abstract:
A motor includes a two-layer rotor and a two-layer stator. The two layer rotor includes an A-phase rotor and a B-phase rotor that are stacked together. When θ1 represents, in electric angle, an angle of the B-phase stator relative to the A-phase stator in a clockwise circumferential direction, and θ2 represents, in electric angle, an angle of the B-phase rotor relative to the A-phase rotor in a counterclockwise circumferential direction, θ1+|θ2|=90° is satisfied.
Abstract:
A motor includes a stator and a rotor. The stator includes an inner circumference stator section and an outer circumference stator section. The inner circumference stator section and the outer circumference stator section each include two stator cores and a coil. The two stator cores each include claw poles and are coupled to each other. The coil is arranged between the two stator cores. The rotor includes an inner circumference magnet and an outer circumference magnet. The inner circumference magnet, which is arranged at an inner circumferential side of the inner circumference stator section, opposes the claw poles in the radial direction. The outer circumference magnet, which is arranged at an outer circumferential side of the outer circumference stator section, opposes the claw poles in the radial direction. The inner circumference stator section and the inner circumference magnet form an inner circumference motor unit. The outer circumference stator section and the outer circumference magnet form an outer circumference motor unit.
Abstract:
A motor includes a rotor and a stator. The rotor includes a plurality of magnets, which function as first magnetic poles, and salient poles, which function as second magnetic poles. A ratio X1:X2 of a quantity X1 of magnetic pole portions of the rotor, which is the sum of the quantity of the magnets and the quantity of the salient poles, and the quantity X2 of slots is 2n:3n (n being a natural number). The sum of a magnetic pole occupying angle θ1 of the magnet and a magnetic pole occupying angle θ2 of the salient pole is 360°. The magnetic pole occupying angle θ1 is set in a range of 180°
Abstract:
A motor including a stator and a rotor. The stator includes teeth and windings. Each tooth has a distal portion defined by a radially inward side of the stator. The rotor, which is arranged inward in the radial direction from the stator, includes a rotor core, magnets, and salient poles. Each salient pole is separated by a void from the magnet that is adjacent in the circumferential direction. The distal portion of each tooth is longer than a radially outward side of each magnet.
Abstract:
A multi-Lundell motor includes a rotor and a stator. The rotor includes first and second rotor cores and a permanent magnet. The first and second rotor cores each include claw poles in the circumferential direction. The permanent magnet is magnetized in the axial direction between the first and second rotor cores. The stator includes first and second stator cores and a winding. The first and second stator cores each include claw poles in the circumferential direction. The winding is arranged between the first and second stator cores and extended in the circumferential direction. At least one of the first and second rotor cores and the first and second stator cores include core segments arranged in the circumferential direction.
Abstract:
A rotor having an axial direction includes at least a pair of rotor cores arranged in the axial direction, and a field magnet located between the rotor cores and magnetized in the axial direction. Each of the rotor cores includes a plurality of claw poles extending in the axial direction. Each of the rotor cores includes a magnetic flux controlling section, which appropriately causes a magnetic flux to flow to the claw poles.
Abstract:
A motor includes a rotor and a stator. The rotor includes a first rotor core including a plurality of first claw-like magnetic poles, a second rotor core including a plurality of second claw-like magnetic poles, and a magnetic field magnet arranged between the first and second rotor cores. The first and second claw-like magnetic poles are alternately arranged in a circumferential direction. The magnetic field magnet causes the first and second claw-like magnetic poles to function as magnetic poles different from each other. The stator includes a first stator core including a plurality of first claw-like magnetic poles, a second stator core including a plurality of second claw-like magnetic poles, and a coil section arranged between the first and second stator cores. The stator is configured to cause the first and second claw-like magnetic poles of the stator to function as magnetic poles different from each other and switch polarities of the magnetic poles on the basis of energization to the coil section. At least ones of the claw-like magnetic poles of the rotor and the claw-like magnetic poles of the stator are formed in a shape in which circumferential centers of distal end portions are shifted in the circumferential direction with respect to circumferential centers of proximal end portions.