Abstract:
This document describes techniques and systems for in operando, non-invasive SOC monitoring of redox flow batteries. The described techniques and systems allow for accurate, inexpensive, portable, and real-time methods to measure the SOC of redox flow batteries. System operators can monitor the SOC by measuring an acoustic attenuation coefficient of the electrolyte in the redox flow battery. The acoustic attenuation coefficient is measured using an ultrasonic transducer attached to a probing cell, which is connected to an electrolyte flow of a redox flow battery. The acoustic attenuation coefficient provides an accurate, real-time SOC measurement that is generally insensitive to varying operational temperatures of the electrolyte solution.
Abstract:
Aqueous electrolytes comprising fluorenone/fluorenol derivatives are disclosed. The electrolyte may be an anolyte for an aqueous redox flow battery. In some embodiments, the compound, or salt thereof, has a structure according to any one of formulas I-III where Q1-Q4 independently are CH, C(R1) or N, wherein 0, 1, or 2 of Q1-Q4 are N; Q5-Q8 independently are CH, C(R2), or N, wherein 0, 1, or 2 of Q5-Q8 are N; Y is C═O or C(H)OH; R1 and R2 independently are an electron withdrawing group; n is an integer >1; and x and y independently are 0, 1, 2, 3, or 4, where at least one of x and y is not 0.
Abstract:
Embodiments of an aqueous electrolyte comprising a base and a phenazine derivative are disclosed. Redox flow batteries including the aqueous electrolyte are also disclosed. The phenazine derivative has a chemical structure according to formula I:
Abstract:
A redox flow battery stack cell frame comprising a support frame and a monolithic bipolar plate integrated within the support frame is disclosed. The bipolar plate comprises a plurality of interdigitated flow channels on at least one surface. The support frame comprises an inlet manifold formed into a facing surface of the first side of the frame, the inlet manifold comprising fluid inlet distribution channels in a serpentine arrangement, each fluid inlet distribution channel aligned with a single inlet flow channel of the bipolar plate; and an outlet manifold formed into the facing surface of the opposing side of the frame, the outlet manifold comprising fluid outlet distribution channels in a serpentine arrangement, each fluid outlet distribution channel aligned with a single outlet flow channel of the bipolar plate. Redox flow battery stack cells and stacks comprising the stack cell frame are also disclosed.
Abstract:
Disclosed are cathodes having electron-conductive high-surface-area materials, aqueous non-halide-containing electrolytes, secondary zinc-iodine energy storage devices using the same, and methods for assembling the same. The disclosed high-surface-area materials and the aqueous non-halide-containing electrolyte solutions can contribute together to the confinement of the active iodine species in the cathode and to the minimization of shuttle effects and self-discharging. The non-halide-containing electrolyte salts can facilitate preferential adsorption of the iodine species to the cathode material rather than dissolution in the aqueous electrolyte solution, thereby contributing to the confinement of the active iodine species.
Abstract:
Redox flow battery systems having a supporting solution that contains Cl− ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42− and Cl− ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl− ions or a mixture of SO42− and Cl− ions.
Abstract:
Composite separators having a porous structure and including acid-stable, hydrophilic, inorganic particles enmeshed in a substantially fully fluorinated polyolefin matrix can be utilized in a number of applications. The inorganic particles can provide hydrophilic characteristics. The pores of the separator result in good selectivity and electrical conductivity. The fluorinated polymeric backbone can result in high chemical stability. Accordingly, one application of the composite separators is in redox flow batteries as low cost membranes. In such applications, the composite separator can also enable additional property-enhancing features compared to ion-exchange membranes. For example, simple capacity control can be achieved through hydraulic pressure by balancing the volumes of electrolyte on each side of the separator. While a porous separator can also allow for volume and pressure regulation, in RFBs that utilize corrosive and/or oxidizing compounds, the composite separators described herein are preferable for their robustness in the presence of such compounds.
Abstract:
Redox flow battery systems having a supporting solution that contains Cl− ions can exhibit improved performance and characteristics. Furthermore, a supporting solution having mixed SO42− and Cl− ions can provide increased energy density and improved stability and solubility of one or more of the ionic species in the catholyte and/or anolyte. According to one example, a vanadium-based redox flow battery system is characterized by an anolyte having V2+ and V3+ in a supporting solution and a catholyte having V4+ and V5+ in a supporting solution. The supporting solution can contain Cl− ions or a mixture of SO42− and Cl− ions.
Abstract:
Improved metal-based redox flow batteries (RFBs) can utilize a metal and a divalent cation of the metal (M2+) as an active redox couple for a first electrode and electrolyte, respectively, in a first half-cell. For example, the metal can be Zn. The RFBs can also utilize a second electrolyte having I−, anions of Ix (for x≧3), or both in an aqueous solution, wherein the I− and the anions of Ix (for x≧3) compose an active redox couple in a second half-cell.