Abstract:
A digital microfluidic chip, a method for driving the same, and a digital microfluidic device are provided. The digital microfluidic chip includes a state transition layer configured to bear a droplet, and a light driving layer configured to provide light for controlling a lyophobicity-lyophobicity transition of the state transition layer to drive the droplet to move. The light driving layer includes light emitting units arranged in an array and provides light. The state transition layer realizes a lyophobicity-lyophobicity transition. The light driving layer controls the lyophobicity-lyophobicity transition by providing light to drive the droplet to move. An existing digital microfluidic chip has a complex structure and a high fabricating cost, while the digital microfluidic chip of the present disclosure has a simple structure, a simple fabricating process and a low fabricating cost, and can realize miniaturization and integration to a maximum extent.
Abstract:
The present disclosure discloses an organic light-emitting diode device, a manufacturing method thereof and a display device. The organic light-emitting diode device comprises: a substrate (100); an organic light-emitting diode layer (200) on a side of the substrate (100); and a barrier layer (510) configured to block ultraviolet rays from entering the organic light-emitting diode layer, wherein the barrier layer is on a side of the organic light-emitting diode layer away from the substrate or on a side of the organic light-emitting diode layer close to the substrate. The organic light-emitting diode device can solve the technical problem of short service life due to the influence of ultraviolet rays in the sunlight.
Abstract:
The embodiments of the present invention provide an organic light emitting diode device, display panel and display device. The existing top emitting series OLED device is improved with a structure of homojunctions; the functional layer of the top emitting series OLED device is also improved. The functional layer comprises a hole injection layer, a hole transport layer, a plurality of light emitting layers, an electron transport layer and an electron injection layer sequentially arranged from the anode. A charge generation layer A and a charge generation layer B are arranged between two directly adjacent light emitting layers. A homojunction is applied in each light emitting unit of the top emitting series OLED device, reducing the types of organic materials and the carrier injection barrier, improving the injection of carriers and the efficiency of the device. The driving voltage of the device is thus reduced.
Abstract:
The present disclosure provides an organic electroluminescent display substrate and a manufacturing method thereof, and a display device. The organic electroluminescent display substrate includes a base substrate and a plurality of pixel units formed on the base substrate, the pixel unit including a light-emitting region and a non-light-emitting region. An organic electroluminescent structure is formed in the light-emitting region, the organic electroluminescent structure including a first electrode layer, an organic luminescent functional layer and a second electrode layer stacked on the base substrate, the second electrode layer including a first portion in the light-emitting region and a second portion in the non-light-emitting region, and a plurality of organic/inorganic material layers are provided between the second electrode layer and the base substrate, the plurality of organic/inorganic material layers including at least the organic luminescent functional layer in the light-emitting region and including a transparent material layer in the non-light-emitting regions of parts of pixel units.
Abstract:
The invention relates to organic electroluminescent materials and provides 9,10-bis[2-(p-substituted phenyl)pyrimidin-4-yl] anthracene compounds and methods of preparing the same, organic electroluminescent devices comprising the compounds, and organic electroluminescent display apparatus comprising the devices. The compounds of the invention are easy to be synthesized and can be used as blue-phosphorescent organic electroluminescent materials. Due to the inherent ability of the materials to block holes, there is no need to arrange a hole-blocking layer between a light-emitting layer and an electron transport layer, which simplifies the manufacturing process of full color display panels of organic electroluminescent display apparatus and reduces the manufacture cost and time. The organic electroluminescent devices made from the materials exhibit high luminous efficiency.
Abstract:
The present invention belongs to the technical field of transparent conductive films and provides a graphene derivative, a transparent conductive film and an organic electroluminescent (EL) device. Methods are also provided for preparation of the graphene derivative and for preparation of an anode of the organic EL device. The graphene derivative exhibits a lower evaporation temperature and a higher work function. The graphene derivative is represented by formula (I): wherein A represents a graphene substrate, n represents the number of the group connected to adjacent two carbon atoms of a carbon ring of the graphene substrate; each X independently represents an electron-withdrawing group; and each R independently represents any one of —R1, —R2, —O—R1, —O—R2, —R1—C6H5, —R2—C6H5, and —R3, wherein each R1 is independently an n-alkyl group having no less than 5 carbon atoms, each R2 is independently a substituted n-alkyl group having no less than 5 carbon atoms in its main chain and having an alkyl substituent, the C6H5 represents a phenyl group which is connected to the end of R1 or R2, and R3 is an aryl group.
Abstract:
An encapsulated structure of a light-emitting device, an encapsulating process thereof, and a display device comprising said encapsulated structure. The encapsulated structure of the light-emitting device comprises: a light-emitting device; and a protective layer of a quaternary ammonium salt formed on a top electrode of the light-emitting device, the quaternary ammonium salt having the following structure: wherein the anion X− is Cl−, Br−, I− or NO3−; and the substituents R1, R2, and R3 are the same or different.
Abstract:
A display panel and a fabricating method thereof, and a displaying device. The display panel includes: a driving backplane, a light-emitting-device layer provided on the driving backplane, and a packaging layer, a color-film layer and a light absorbing layer provided on one side of the light-emitting-device layer that is further away from the driving backplane; wherein the light absorbing layer is configured for absorbing light rays of a specific wavelength in external-environment light and in light rays emitted by the light-emitting-device layer; and the specific wavelength includes at least one of a wavelength between a red-light wave band and a green-light wave band, a wavelength between a green-light wave band and a blue-light wave band, a wavelength shorter than a blue-light wave band and a wavelength longer than a red-light wave band.
Abstract:
A light-adjusting structure, a method for manufacturing the light-adjusting structure, and a light-adjusting module are provided, which belong to the field of display technology, the light-adjusting structure includes: a first flexible substrate and a second flexible substrate oppositely arranged; a first transparent electrode and a second transparent electrode which are located between the first flexible substrate and the second flexible substrate; a first alignment layer located on a side of the first flexible substrate facing towards the second flexible substrate; a second alignment layer located on a side of the second flexible substrate facing towards the first flexible substrate; and a spacer and a dye liquid crystal layer which are located between the first alignment layer and the second alignment layer. The solutions of the present disclosure can meet light-adjusting requirements of vehicle windows.
Abstract:
A pixel control circuit and a control method thereof, and a display device. The pixel control circuit includes a control-signal output sub-circuit and a switch sub-circuit. An input terminal of the switch sub-circuit is electrically coupled to an output terminal of the control-signal output sub-circuit. An input terminal of the control-signal output sub-circuit is electrically coupled to a data line. The control-signal output sub-circuit is configured to: compare a voltage received by the data line with a reference voltage; and if a value of the voltage is equal to a value of the reference voltage, output a first control signal, otherwise output a second control signal. The switch sub-circuit is configured to be turned off under control of the first control signal and turned on under control of the second control signal. The reference voltage is a corresponding gamma voltage when the display panel is in a dark state.