Abstract:
A shift register, a gate driving device and a liquid crystal display device aim to solve the problem that the lifespan of the gate driving device is shortened since some transistors in an existing shift register are in a turn-on state all the time during a non-operational period to reduce noise on a corresponding gate line. The shift register includes an output module (12) for connecting a control signal output terminal (OUTPUT) of the shift register and a clock signal input terminal (CLKIN) under the control of the signal output from a driving module (11); a first pull-down module (13) for connecting the pull-up node (PU) and the second level signal input terminal (15) and connecting the control signal output terminal (OUTPUT) of the shift register and the second level signal input terminal (15) under the control of the signal output from a driving module (11); and a second pull-down module (14) for connecting the pull-up node (PU) and the second level signal input terminal (15) and connecting the control signal output terminal (OUTPUT) of the shift register and the second level signal input terminal (15) under the control of the signal output from a driving module (11).
Abstract:
A shift-register unit, a grid driving circuit and a displaying device, which relates to the technical field of displaying. In the present disclosure, the oxide-semiconductor layers of the oxide thin-film transistors may be delimited into regions according to the total channel widths and the channel lengths required by the oxide thin-film transistors in the shift-register unit, wherein the sum of the widths of the independent semiconductor branches obtained by the delimitation is equal to the required total channel width. Accordingly, one oxide thin-film transistor can realize the required total channel width by using the one or more semiconductor branches, to ensure the normal operation of the oxide thin-film transistor, whereby the oxide-semiconductor layers of the different oxide thin-film transistors can be configured differently, to realize the purpose of reducing the border frame of the displaying device.
Abstract:
A shift-register unit, a grid driving circuit and a displaying device, which relates to the technical field of displaying. In the present disclosure, the oxide-semiconductor layers of the oxide thin-film transistors may be delimited into regions according to the total channel widths and the channel lengths required by the oxide thin-film transistors in the shift-register unit, wherein the sum of the widths of the independent semiconductor branches obtained by the delimitation is equal to the required total channel width. Accordingly, one oxide thin-film transistor can realize the required total channel width by using the one or more semiconductor branches, to ensure the normal operation of the oxide thin-film transistor, whereby the oxide-semiconductor layers of the different oxide thin-film transistors can be configured differently, to realize the purpose of reducing the border frame of the displaying device.
Abstract:
A shift-register unit, a grid driving circuit and a displaying device, which relates to the technical field of displaying. In the present disclosure, the oxide-semiconductor layers of the oxide thin-film transistors may be delimited into regions according to the total channel widths and the channel lengths required by the oxide thin-film transistors in the shift-register unit, wherein the sum of the widths of the independent semiconductor branches obtained by the delimitation is equal to the required total channel width. Accordingly, one oxide thin-film transistor can realize the required total channel width by using the one or more semiconductor branches, to ensure the normal operation of the oxide thin-film transistor, whereby the oxide-semiconductor layers of the different oxide thin-film transistors can be configured differently, to realize the purpose of reducing the border frame of the displaying device.
Abstract:
Provided is a display panel. The display panel comprises an array substrate and a color filter substrate, wherein the color filter substrate comprises a second substrate and a black matrix pattern, wherein the black matrix pattern comprises a body, via hole shielding parts, and compensation shielding parts, the via hole shielding parts being disposed within first domains of part of plurality of sub-pixel regions, the compensation shielding parts being disposed within second domains that are adjacent in first direction to the first domains where the via hole shielding parts are disposed, and at most one of the via hole shielding part and the compensation shielding part being disposed in one sub-pixel region.
Abstract:
There is provided a display panel including: a light guide structure layer having a light exiting side and configured to enable internal light to be emitted from a preset position; a display structure layer on the light exiting side and including a light adjusting structure, a black matrix and a reflection matrix positioned on a side, away from the light guide structure layer, of the light adjusting structure, the light adjusting structure is configured to control light emitted from the preset position to enter an area where the black matrix is positioned and/or an area where the reflection matrix is positioned; a light absorption structure layer on a side of the light adjusting structure away from the black matrix and configured to absorb light reflected by the black matrix and allow light reflected by the reflection matrix to pass through. A display device is further provided.
Abstract:
The disclosure provides a gate driving circuit, an array substrate and a method for recovering the same. The gate driving circuit comprises: a plurality of cascaded shift registers; a recovering signal line and a first reference signal line, extending along an arrangement direction of the shift registers; and a plurality of recovering units, corresponding to the shift registers respectively. After determining a failed shift register in the gate driving circuit, the recovering unit replaces a signal outputted from the failed shift register with a first reference signal from the first reference signal line and loads the first reference signal to the corresponding gate line for recovering. Thus, compared with a structure of outputting the signal provided by the recovering signal line to the gate line, the gate driving circuit of the disclosure has a less significant attenuation on the signal outputted to the gate line.
Abstract:
The present invention provides an in-cell touch screen and a drive method thereof. The in-cell touch screen comprises a first substrate and a first electrode layer provided above the first substrate, wherein, the first electrode layer comprises touch control drive electrodes, touch control sensing electrodes and touch control amplification electrodes, which are mutually insulated, the touch control amplification electrodes are provided in a gap between the touch control drive electrodes and the touch control sensing electrodes, during a display phase, at least the touch control drive electrodes and the touch control sensing electrodes are applied with a common voltage, and during a touch control phase, the touch control drive electrodes are applied with a touch control drive signal, and the touch control sensing electrodes output touch control sensing signals.
Abstract:
Provided are a shift register, a gate driver and a display device capable of eliminating voltage coupled noise at an output terminal. The shift register comprises a pulling-up unit, a clock control unit, a resetting unit, an inverting unit and a pulling-down unit; the pulling-up unit is connected with a shift trigging signal terminal, a high level signal terminal and the resetting unit; the clock control unit is connected with the pulling-up node, a clock signal terminal and the pulling-down unit; the resetting unit is connected with a reset signal terminal, a low level signal terminal, the pulling-up node and the output terminal; the inverting unit is connected with the high and low level signal terminals, the pulling-up node and the pulling-down unit; the pulling-down unit is connected with the pulling-up node, the pulling-down node, the low level signal terminal, the shift trigging signal terminal and the output terminal.
Abstract:
Embodiments of the present invention disclose an in-cell touch screen panel and a display device, at least one gate signal lines is used as a touch scanning line, a touch readout line is disposed between adjacent columns of pixel units in the array substrate, and a touch unit is disposed in a region defined by the touch scanning line and the touch readout line; each touch unit includes a light sensing sub-unit, a touch electrode and a touch signal control sub-unit; the light sensing sub-unit is connected with the touch signal control sub-unit through the touch electrode, and the control signal output from the light sensing sub-unit varies with the variation of external light and coupling capacitance of the touch electrode; the touch signal control sub-unit is connected with the touch scanning line and the touch readout line respectively, the touch signal control sub-unit outputs the touch sensing signal modulated by the control signal through the touch readout line upon the touch scanning line transferring electrical signals. Compared with a single mode capacitive touch screen panel, the in-cell touch screen panel disclosed in embodiments of the present invention can improve the touch sensitivity of the touch screen panel.