Abstract:
Response frame modulation coding set (MCS) selection within single user, multiple user, multiple access, and/or MIMO wireless communications. With respect to any exchange between communication devices in which there is a response frame, a first frame (e.g., an eliciting frame) is a first transmitted from the eliciting communication device to the responding communication device, and a second frame (e.g., a response frame) is transmitted from the responding communication device to the eliciting communities device. Appropriate selection of MCS to be used within the response frame may be determined explicitly or implicitly. One or more parameters (e.g., a limit parameter, a reduction parameter, etc.) may be used to determine the MCS of the response frame. The MCS employed for a response frame may be selected from a basic MCS set that ensures all response frames from any responding communication device may be properly received by the eliciting communication device.
Abstract:
A multi-user super-frame (MU-SF), as controlled by a MU-SF owner, is used to govern the manner by which various wireless communication devices have access to the communication medium. When various wireless communication devices operate within a wireless communication system, communication medium access can be handled differently for wireless communication devices having different capabilities. Per the MU-SF, those having a first capability may get medium access in accordance with a first operational mode (e.g., carrier sense multiple access/collision avoidance (CSMA/CA)), while those having a second capability may get medium access in accordance with a second operational mode (e.g., scheduled access). The respective durations for each of the first operational mode and the second operational mode within various MU-SFs need not be the same; the respective durations thereof may be adaptively modified based on any number considerations.
Abstract:
Multi-user null data packet (MU-NDP) sounding within multiple user, multiple access, and/or MIMO wireless communications. Within communication systems including multiple wireless communication devices (e.g., one or more APs, STAs, etc.), channel sounding of the selected communication links between the various wireless communication devices is performed. A MU-NDP announcement frame is transmitted to and received by various wireless communication devices indicating which of those wireless communication devices (e.g., one, some, or all) are being sounded. Then, respective NDP sounding frames are transmitted via the communication links corresponding to those wireless communication devices (e.g., one, some, or all) are being sounded, and sounding feedback signals are subsequently sent back to the original transmitting wireless communication device. In some instances, after transmission of the MU-NDP announcement frame, a clear to send (CTS) is sent from at least one of the wireless communication devices thereby precipitating the transmission of the NDP sounding frames.
Abstract:
Beamforming feedback frame formats within multiple user, multiple access, and/or MIMO wireless communications. A transmitting wireless communication device (TX) transmits a sounding frame to one or more receiving wireless communication devices (RXs) using one or more antennae and one or more clusters. Any antenna/cluster combination may be employed in communications between TXs and RXs. The one or more RXs receive/process the sounding frame to determine a type of beamforming feedback frame to be provided to the TX. Any one of a variety of beamforming feedback frame types and a types of information may be contained within a respective beamforming feedback frame including various characteristics of the respective communication channel between the TX and each of the various RXs. A common beamforming feedback frame format may be supported and employed by all such wireless communication devices (e.g., TX and RXs) when performing MU-MIMO operation such as in accordance with IEEE 802.11ac/VHT.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices).The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications. Within such communication systems, there can be a number of devices (e.g., STAs) that communicate with a single device (e.g., AP). A multi-cast sounding frame may be transmitted from a transmitting device to a number of receiving devices. Appropriate scheduling or ordering of feedback signals from some or all of the receiving devices may be performed explicitly (e.g., sounding frame sent from the transmitting device to a receiving device) or implicitly (e.g., control information sent from the transmitting device to the receiving device, sounding frame sent to the transmitting device from the receiving device). Such characterization and training is with respect to a channel or path in which data will subsequently follow. Such characterization and training can be performed in accordance with group membership (e.g., with respect to only some of the receiving devices).
Abstract:
Time division multiple access (TDMA) media access control (MAC) adapted for single user, multiple user, multiple access, and/or MIMO wireless communications. Various com systems may include smart meter stations (SMSTAs) and/or wireless stations (STAs). Appropriate coordination is made with respect to such communication devices to ensure appropriate uplink (and/or downlink) communications between a network manager or coordinator (e.g., an access point (AP)) and the SMSTAs and/or STAs. With respect to SMSTAs, the relative duration of time that such communication devices are awake and operative versus asleep (or in a reduced power and/or functionality state) can be significant. Certain implementations may include a relatively large number of such communication devices (e.g., 10s, 100s, 1000s, or more), and appropriate coordination and scheduling of such communications to/from them is made using one or more variations of TDMA signaling (e.g., including different respective service periods (SPs), communication medium access operational modes, adaptation thereof, etc.).
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Transmission coordination within multiple user, multiple access, and/or MIMO wireless communications. Within wireless communication systems, there can be various wireless communication devices therein that are not all compliant with a common capability set, communication protocol, communication standard, recommended practice, etc. For example, some communication systems may have some wireless communication devices characterized as ‘legacy’ wireless communication devices, and other wireless communication devices therein may be newer and compliant with newer capability sets, communication protocols, communication standards, recommended practices, etc. In such instances, coordination of transmissions among the various wireless communication devices may be made, when performing simultaneous transmissions, by ensuring that transmissions of devices on different channels is made when aligned on a common boundary of an OFDM symbol. Alternatively, such simultaneous transmissions may be made when offset by some multiple of OFDM symbol duration. When performing non-simultaneous transmissions, transmissions may be made based on channel availability.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.