摘要:
It has been discovered by the inventors that the efficiency and data integrity of a storage device can be improved by dynamically adjusting certain operating parameters to optimal values during the operation of the storage device. In one embodiment, the physical properties of a storage device such as a hard disk drive are measured during the manufacturing process to determine the dependency of the storage device upon the environmental conditions in which the storage device is operating. The physical properties of the storage device and the effect the operating environment of the storage device has upon the storage device performance are determined, and optimal values for the write current of the storage device are stored in a lookup table. The temperature in which the storage device is operating is used as a reference into the data that resides in the lookup table. Optimal values for the precompensation delay may also be stored in the lookup table. During operation of the storage device, the temperature of the operating environment is sensed and used as a reference value into the lookup table. The optimal values of write current and precompensation delay corresponding to the sensed temperature are retrieved, and the write current and precompensation delay of the storage device are adjusted accordingly.
摘要:
Embodiments of the present invention recite a write gap structure for a magnetic recording head. In one embodiment, the write gap structure comprises at least one layer of inert material is disposed proximate to the P2 pole of a magnetic recording head. A layer of magnetic material is disposed between the layer of inert material and the P1 pedestal (P1P) of the magnetic recording head. In embodiments of the present invention, the write gap structure further comprises a second layer of inert material is disposed between the layer of magnetic material and the P1P of the magnetic recording head. In embodiments of the present invention, the write gap structure only overlies a portion of the write gap of the magnetic recording head with reference to the throat height dimension of the write gap.
摘要:
A method and apparatus for monitoring track misregistration that is quicker and that is not limited to worst case assumptions. The present invention includes a first memory for accumulating position error signals for a head to produce an accumulated value, a processor for normalizing the accumulated value to produce a normalized result at a predetermined trigger event and a second memory for adding the normalized result therein to produce a running sum; wherein the head is positioned using the running sum. The processor resets the first memory when the normalized result is produced. A counter is provided for incrementing a count value after each position error signal is added to the first memory. The processor normalizes the accumulated value according to the count value of the counter, and the processor resets the counter as a result. In addition, the processor may normalize the accumulated value according to a population mean and a variance associated with the data storage system. The trigger event may include the accumulated error value reaching a predetermined threshold or a servo seek to the next track. The process may be initiated using a self-test command.
摘要:
A magnetic recording disk drive with a magnetoresisitive (MR) read head and a control unit comprising an operating pressure logic function that is responsive to a thermoresistive signal contained in the feedback signal from the MR read head. The thermal conductivity of the air inside of the hard disk drive is effected by the air pressure. Fluctuation in the thermal conductance from the MR read head to its surroundings inside of the hard drive affects the temperature of the MR head, thus affecting the thermoresistivity of the MR read head. Based on a thermoresistive signal, the temperature of the head may be determined, which in turn is applied to determine the pressure, based on a predetermined relationship between the MR read head temperature, internal pressure, and internal operating temperature.
摘要:
A magnetic data recording system that can directly measure soft underlayer spacing of a perpendicular magnetic write head during operation. The soft underlayer spacing of the magnetic write head can be determined by measuring the magnetic inductance of the write head. The inductance of the write head varies with changes in the distance between the write pole and the soft underlayer of the magnetic medium. By connecting the write head with magnetic inductance measuring circuitry, the soft underlayer spacing can be constantly monitored during operation of the magnetic data recording system. The system can also include active fly height control such as a thermal fly height control capability. By directly measuring the soft underlayer spacing in real time during use of the data recording system, the actively fly height controlling features can be operated efficiently to precisely maintain a desired spacing between the write pole and the soft underlayer of the magnetic medium.
摘要:
Embodiments of the present invention provide a magnetic disk drive system in which the write element leads the read element in the tangential direction of rotation of the magnetic disk. In addition, the servo sector information is preferably arranged such that information that is not needed for write operation is placed at the end of the servo sector. In this way, the servo read operation can be terminated sooner and the write operation can initiate sooner after going over the servo sector. The write element in a write operation writes data to the data sector of a track until an end of the data sector before reaching a front end of a servo sector following the end of the data sector. The read element reads information in the servo sector needed for the write operation. The write element starts writing data in a next data sector following the servo sector after the write element reaches the next data sector and after the read element has read all information in the servo sector needed for the write operation.
摘要:
Provided are a method, system, and program for performing error correction in a storage device having a magnetic storage medium. A plurality of zones are defined in the magnetic storage medium, wherein each zone comprises a plurality of addressable locations in the magnetic storage medium. A determination is made as to whether a change of a signal-to-noise ratio for one subject zone of the plurality of zones exceeds a threshold. An operation is performed to improve the signal-to-noise ratio with respect to the subject zone of the magnetic storage medium after determining that the change of the signal-to-noise ratio exceeds the threshold.
摘要:
A disk drive operative to reduce squeeze hard error is described. In response to a write fault (404) indicating that data has been inadvertently written to some portion of a track adjacent to an intended track, track overshoot is determined (416) based on a position error signal (PES) and pre-stored head width data. If the track overshoot exceeds a threshold (418), data from the adjacent track is read and rewritten (422) to remove the overshoot interference. Preferably, the reading and rewriting is performed during an idle mode immediately following the write fault using previously stored addresses.
摘要:
In a disk drive system, a servo controller is operative to perform a process of inhibiting write operations for writing data to tracks of a disk during a head settling period following a track seek operation. During each of a first plurality of sampling intervals transpiring during a first time period, the servo controller determines a present position value indicative of the position of the head during the present sampling interval, and also determines a predicted position value indicative of the position of the head during a subsequent sampling interval. Also during each of the first plurality of sampling intervals, the servo controller determines: whether the present position value is within a first error margin from the center of a target track; and whether the predicted position value is within the first error margin. If the present position value and the predicted position value are both within the first error margin, the servo controller enables write operations. During each of a second plurality of the sampling intervals transpiring during a second time period, the servo controller determines a predicted position value indicative of the position of the head during a subsequent sampling interval. Also during each of the second plurality of sampling intervals, the servo controller determines whether the predicted position value is within a second error margin from the center of the target track. If the predicted position value is not within the second error margin, the servo controller inhibits write operations.