摘要:
A pixel circuit and an organic light emitting diode (OLED) display device using the same are provided. The pixel circuit compensates for a threshold voltage of a driver transistor and for a voltage drop, and separately drives an initialization time to improve a contrast ratio. The pixel circuit further suppresses a leakage current caused by a data voltage using a fixed power source so that current variation caused by the leakage current can be reduced or minimized to improve crosstalk, and the duty of an emission control signal can be adjusted to remove motion blur. The pixel circuit also compensates for a leakage current generated in a turn-off state of a transistor with an increase in a drain-source voltage.
摘要:
A pixel circuit and an organic light emitting diode (OLED) display device using the same are provided. The pixel circuit compensates for a threshold voltage of a driver transistor and for a voltage drop, and separately drives an initialization time to improve a contrast ratio. The pixel circuit further suppresses a leakage current caused by a data voltage using a fixed power source so that current variation caused by the leakage current can be reduced or minimized to improve crosstalk, and the duty of an emission control signal can be adjusted to remove motion blur. The pixel circuit also compensates for a leakage current generated in a turn-off state of a transistor with an increase in a drain-source voltage.
摘要:
A light sensor circuit, includes a light receiving element coupled to a first power supply, a capacitor coupled between the light receiving element and a second power supply, a first transistor including a gate electrode coupled to a first electrode of the capacitor, and a second transistor including a gate electrode coupled to a selection signal line, wherein the first transistor is coupled between the selection signal line and a first electrode of the second transistor, and the second transistor is coupled between a second electrode of the first transistor and an output signal line.
摘要:
An organic light emitting diode display includes: a panel; a data driver connected to a data line formed on the panel; a gate driver crossing the data line in an insulated manner and connected to gate lines formed on the panel; an input line for receiving clock signals from the outside; a first connecting line electrically connected to the input line to supply the clock signal to the gate driver; a second connecting line electrically connected to the input line; and a third connecting line extended from the second connecting line to electrically connect the second connecting line and the first connecting line.
摘要:
An organic light emitting display apparatus includes an organic light emitting diode, a photo sensor, and a light blocking portion. The light blocking portion is at at least a side of the photo sensor so that light emitted from the organic light emitting diode is not directly incident on the photo sensor.
摘要:
An organic light emitting display includes pixels coupled to scan lines, first control lines, second control lines, data lines, and first and second power sources. The organic light emitting display further includes a control line driver for providing a first control signal and a second control signal to the pixels through the first control lines and the second control lines, a scan driver for providing scan signals to the pixels through the scan lines, and a data driver for providing data signals to the pixels through data lines. The control line driver simultaneously supplies a first off control signal to the pixels through the first control lines in a first period, simultaneously supplies a reference voltage to the pixels through the first control lines in a second period, and simultaneously supplies a first on control signal to the pixels through the first control lines in a third period.
摘要:
An organic light emitting display includes a pixel unit having pixels coupled to scan lines, first control lines, second control lines, data lines, and first and second power sources, a control line driver for providing a first control signal and a second control signal to the pixels through the first control lines and the second control lines, a scan driver for providing scan signals to the pixels through the scan lines, and a data driver for providing data signals to the pixels through data lines. The scan driver simultaneously supplies a first scan signal to the pixels through the scan signals. In the organic light emitting display, deviation in the threshold voltages of the driving transistors included in the pixels is compensated without a power swing so as to display an image with uniform brightness.
摘要:
Embodiments provide a light sensor circuit for a flat panel display which improves resolution at low luminance and increases the range of sensible ambient light by divisionally driving a frame period, in which light is sensed, into a plurality of sub-frames, and a method of driving the light sensor circuit.
摘要:
A TSD (Touch Screen Display) includes a panel including a plurality of light emitting devices to form an image, and a plurality of photo sensors to capture an image of an object touching the panel; a touch position deriving unit to derive a touch position of the object based on output signals of the photo sensors; and a light emission control unit to derive a probability of a plurality of previous touch positions derived by the touch position deriving unit, predict a next touch position after the plurality of previous touch positions according to the probability, and control at least one of the light emitting devices in a light emission area including the next touch position to emit light.
摘要:
Disclosed are a driving circuit and an organic light emitting display using the same, which realizes stable gray levels. The driving circuit includes a first selector that produces a first selection and sub selection signals, and a second selector that produces a second selection and sub selection signals. The driving circuit also includes a first voltage divider and a second voltage divider, each of which receives the selection signals. The first and the second voltage dividers can produce various voltage levels depending on the various combination of the selection signals.