Abstract:
A device, medium and method for deblending seismic data associated with a subsurface of the earth. The method includes a step of receiving seismic data S recorded with one or more seismic receivers, wherein the seismic data S includes shot recordings generated by first and second source arrays that are simultaneously actuated; a step of detecting incoherent energy of the seismic data S using a median filter; a step of replacing incoherent parts of the seismic data with a projection filter to obtain deblended data for one of the two or more source arrays; and a step of generating in a computing device an image of the subsurface based on the deblended data.
Abstract:
Methods and apparatuses for directional designature in shot domain are provided. Azimuth and take-off angles are calculated for each record in the seismic data. Directional designature is then applied to the seismic data using a source signature dependent on the azimuth and take-off angles.
Abstract:
System, medium and method for de-blending seismic data. The method for acquiring blended seismic data associated with a subsurface of the earth includes receiving coordinates of a sail line associated with first and second shot point locations; towing first and second source arrays in water along the sail line; shooting the first and second source arrays with a constant delay parameter so that a seismic trace recorded by a seismic sensor has at least a first uncontaminated portion that includes seismic energy generated substantially only by one of the first and second source arrays and a second portion that includes seismic energy generated by both the first and second source arrays; and recording blended seismic data generated by the first and second source arrays with the seismic sensor.
Abstract:
A method for removing ocean bottom and/or geology related contamination. The method includes receiving first measurements corresponding to first seismic sensors mounted on a first source array; receiving second measurements corresponding to second seismic sensors mounted away from the first source array; processing the second measurements to determine a contamination model related to the ocean bottom and geology; removing the contamination model from the first measurements to obtain cleaned data; and calculating a source signature of the first source array based on the cleaned data.
Abstract:
A marine seismic source includes source elements configured to emit waves having different frequencies while the source elements are towed at different predetermined depths, respectively. The predetermined depths are calculated such that water-surface reflections of the waves generated by a source element among the source elements interfere constructively with the waves generated by the source element and propagating toward an explored structure under the seafloor. The waves combine to yield a spike-like signature of the source.
Abstract:
Computing device, computer instructions and method for de-ghosting seismic data related to a subsurface. The method may include receiving input seismic data recorded by seismic receivers that located at different depths (zr), generating migration data (du) and mirror migration data (dd) from the input seismic data, deriving a ghost free model (m) based on simultaneously using the migration data (du) and mirror migration data (dd), generating primary (p) and ghost (g) datasets based on the ghost free model (m), simultaneously adaptively subtracting the primary (p) and ghost (g) datasets from the migration data (du) to provide adapted primary (p′1 and p′2) and adapted residual (r′1 and r′2) datasets, and generating a final image (f) of the subsurface based on the adapted primary (p′1 and p′2) and the adapted residual (r′1 and r′2) datasets. In certain embodiments, the input seismic data d includes both hydrophone data and particle motion data.
Abstract:
Computing device, computer instructions and method for directional designature of seismic data d with a given source directivity. The method includes obtaining directional operators r; calculating a model u with a modified source directivity based on (1) seismic data d, and (2) an operator that is a combination of the directional operators r and a reverse transform operator L; using the model u to obtain seismic data dfree with modified source directivity; and generating a final image of the subsurface using seismic data dfree.
Abstract:
Methods and devices for seismic data processing deblend seismic data gathered using simultaneous source acquisition by applying two different deblending techniques. The second deblending technique is applied to residual data obtained after applying the first deblending technique. At least one of these first and second deblending techniques uses a signal-to-noise map.