Abstract:
Apparatus is provided featuring a signal processor or signal processing module configured at least to: receive signaling containing information about a radiation impedance of a piston vibrating a process medium, including a fluid or slurry; and determine a speed of sound or density measurement related to the process medium, based at least partly on the signaling received. The signal processor or signal processing module may determine a speed of sound measurement related to the process medium, based on at least partly on the density of the process medium, including where the density of the process medium is known, assumed or determined by the signal processor or signal processing module, or determine a density measurement related to the process medium, based on at least partly on the speed at which sound travels in the process medium, including where the speed of sound of the process medium is known, assumed or determined by the signal processor or signal processing module.
Abstract:
The present invention provides new techniques related to magnetically controllable and/or steerable froth for use in separation processes of mineral-bearing ore and bitumen. Apparatus is provided featuring a processor configured to contain a fluidic medium having a material-of-interest and also having a surfactant with magnetic properties so as to cause the formation of a froth layer that contains at least some of the material-of-interest and is magnetically responsive; and a magnetic field generator configured to generate a magnetic field and provide non-mechanical mixing and steering/driving of the froth layer in the processor. The material-of-interest may be mineral-bearing ore particles or bitumen. The processor includes a flotation tank, a primary separation vessel (PSV), or a pipe, including a tailings pipeline. The pipe has a non-magnetic pipe section, and the magnetic field generator includes a magnetic coil arranged in relation to non-magnetic pipe section to generate the magnetic field and provide the non-mechanical mixing and steering/driving of the froth layer in the pipe.
Abstract:
Apparatus includes a signal processing module configured at least to: receive signaling containing information about an application of a rotating magnetic field across a fluid flowing in a pipe, tank, cell or vessel; and determine a flow analysis across the fluid flowing in the pipe, tank, cell or vessel, based at least partly on the signaling received. The signal processing module may also be configured to provide corresponding signaling containing information about the flow analysis across the fluid flowing in the pipe, tank, cell or vessel.
Abstract:
Apparatus is provided featuring a signal processor or processing module configured at least to: receive signaling containing information about the conductivity of a fluid contained, processed or flowing in a pipe, tank, cell or vessel having electrodes around the circumference of the pipe, tank, cell or vessel in an irregular configuration; and determine a scale build-up in the pipe, tank, cell or vessel using a tomographic processing technique, based at least partly on the signaling received. The signal processor module may be configured to provide corresponding signaling containing information about the scale build-up in the pipe, tank, cell or vessel using the tomographic processing technique, e.g., including where the corresponding signaling contains information about a chemical to be injected to control the scale build-up, including in a closed loop manner.
Abstract:
Apparatus is provided featuring a signal processor or signal processing module configured at least to: receive signaling containing information about a radiation impedance of a piston vibrating a process medium, including a fluid or slurry; and determine a speed of sound or density measurement related to the process medium, based at least partly on the signaling received. The signal processor or signal processing module may determine a speed of sound measurement related to the process medium, based on at least partly on the density of the process medium, including where the density of the process medium is known, assumed or determined by the signal processor or signal processing module, or determine a density measurement related to the process medium, based on at least partly on the speed at which sound travels in the process medium, including where the speed of sound of the process medium is known, assumed or determined by the signal processor or signal processing module.
Abstract:
Apparatus is provided comprising a signal processor that receives signaling containing information about an acoustic signal swept and sensed over a frequency range in relation to a pipe; and determines information about the structure of the pipe based at least partly on two or more sub-frequency ranges that form part of the frequency range in the signaling received. The signal processor also receives the acoustic signal being transmitted to the pipe and corresponding signaling in the two or more sub-frequency ranges containing information about reflections of the acoustic signal back from the pipe; and determines information about the structure of the pipe based at least partly on a coherent mixing of the acoustic signal and the corresponding signaling in the two or more sub-frequency ranges using a coherent acoustic tomography technique. Alternatively, the signal processor also receives associated signaling in the two or more sub-frequency ranges containing information about associated resonance in a liner of a wall of the pipe and determines information about the liner of the wall of the pipe, based at least partly on the two or more sub-frequency ranges.
Abstract:
Apparatus, such as a flotation separation device, features a flotation cell or column configured to receive a mixture of water, valuable material and unwanted material; receive polymer-based materials, including polymer bubbles or beads, configured to attach to the valuable material in the mixture; and provide enriched polymer-based materials, including enriched polymer bubbles or beads, having the valuable material attached thereon.