Abstract:
Apparatus is provided having an acoustic-based air probe with an acoustic source configured to provide an acoustic signal into a mixture of concrete; and an acoustic receiver configured to be substantially co-planar with the acoustic source, to respond to the acoustic signal, and to provide signaling containing information about the acoustic signal injected into the mixture of concrete.
Abstract:
Apparatus is provided having an acoustic-based air probe with an acoustic source configured to provide an acoustic signal into a mixture of concrete; and an acoustic receiver configured to be substantially co-planar with the acoustic source, to respond to the acoustic signal, and to provide signaling containing information about the acoustic signal injected into the mixture of concrete.
Abstract:
Apparatus is provided having an acoustic-based air probe with an acoustic source configured to provide an acoustic signal into a mixture of concrete; and an acoustic receiver configured to be substantially co-planar with the acoustic source, to respond to the acoustic signal, and to provide signaling containing information about the acoustic signal injected into the mixture of concrete.
Abstract:
The present invention provides a new and unique apparatus featuring a signal processor or processing module configured to: receive signaling containing information about a fluid flow passing through a pipe that is channelized causing flow variations in the fluid flow; and determine corresponding signaling containing information about a fluid flow characteristic of the fluid flow that depends on the flow variations caused in the fluid flow channelized, based upon the signaling received. The signal processor or processing module may be configured to provide the corresponding signaling, including where the corresponding signaling contains information about the fluid flow characteristic of the fluid flow channelized.
Abstract:
The invention provides a signal processor that receives a signal containing information about an acoustic signal that is generated by at least one acoustic transmitter, that travels through an aerated fluid in a container, and that is received by at least one acoustic receiver arranged in relation to the container, including inside the container; and determines the gas volume fraction of the aerated fluid based at least partly on the speed of sound measurement of the acoustic signal that travels through the aerated fluid in the container. The signal processor also sends an output signal containing information about the gas volume fraction of the aerated fluid. The signal processor may be configured together with at least one acoustic transmitter, the at least one acoustic receiver, or both.
Abstract:
Apparatus is provided featuring a signal processor or signal processing module configured at least to: receive signaling containing information about a radiation impedance of a piston vibrating a process medium, including a fluid or slurry; and determine a speed of sound or density measurement related to the process medium, based at least partly on the signaling received. The signal processor or signal processing module may determine a speed of sound measurement related to the process medium, based on at least partly on the density of the process medium, including where the density of the process medium is known, assumed or determined by the signal processor or signal processing module, or determine a density measurement related to the process medium, based on at least partly on the speed at which sound travels in the process medium, including where the speed of sound of the process medium is known, assumed or determined by the signal processor or signal processing module.
Abstract:
Apparatus is provided featuring a signal processor or processing module configured at least to: a signal processor configured to: receive signaling containing information about at least one rheological parameter related to a fluid containing Mature Fine Tailings (MFTs) flowing through a process pipe; and determine a dosing of a polymer to the fluid so as to cause a polymer induced agglomeration of the MFTs in the fluid, based at least partly on the signaling received. The signal processor may be configured to provide corresponding signaling to control the dosing of the polymer to cause the polymer induced fine agglomeration of the MFTs in the fluid.
Abstract:
A method for determining one or more fluid flow parameters for a fluid flowing within a pipe is provided. The fluid is a mixture of solid particles and gas. The method includes the steps of: a) providing a meter operable to determine the velocity of the fluid flow through the pipe, which meter is substantially insensitive to the particulate/gas mass ratio of the fluid flow; b) determining the velocity of the fluid flow within the pipe using the meter; and c) determining a particulate/gas mass ratio using a density value for the gas within the flow and the determined fluid flow velocity.
Abstract:
Apparatus is provided featuring a signal processor or processing module configured at least to: a signal processor configured to: receive signaling containing information about at least one rheological parameter related to a fluid containing Mature Fine Tailings (MFTs) flowing through a process pipe; and determine a dosing of a polymer to the fluid so as to cause a polymer induced agglomeration of the MFTs in the fluid, based at least partly on the signaling received. The signal processor may be configured to provide corresponding signaling to control the dosing of the polymer to cause the polymer induced fine agglomeration of the MFTs in the fluid.
Abstract:
Apparatus is provided featuring a signal processor or signal processing module configured at least to: receive signaling containing information about a radiation impedance of a piston vibrating a process medium, including a fluid or slurry; and determine a speed of sound or density measurement related to the process medium, based at least partly on the signaling received. The signal processor or signal processing module may determine a speed of sound measurement related to the process medium, based on at least partly on the density of the process medium, including where the density of the process medium is known, assumed or determined by the signal processor or signal processing module, or determine a density measurement related to the process medium, based on at least partly on the speed at which sound travels in the process medium, including where the speed of sound of the process medium is known, assumed or determined by the signal processor or signal processing module.