-
公开(公告)号:US20240345580A1
公开(公告)日:2024-10-17
申请号:US18731490
申请日:2024-06-03
Applicant: Gecko Robotics, Inc.
Inventor: Mark Loosararian , Joshua Moore , Yizhu Gu , Kevin Low , Edward Bryner , Logan MacKenzie , Ian Miller , Alvin Chou , Todd Joslin
IPC: G05D1/00 , B25J5/00 , B25J9/00 , B25J9/10 , B25J9/16 , B25J13/08 , B25J19/00 , B25J19/02 , B60B19/00 , B60G17/015 , B60G17/02 , B60G21/00 , B62D37/04 , B62D57/02 , B62D57/024 , G01B7/06 , G01B11/06 , G01B11/24 , G01B11/30 , G01B17/02 , G01B17/06 , G01B17/08 , G01J3/50 , G01K13/00 , G01N29/00 , G01N29/04 , G01N29/22 , G01N29/265 , G01N29/28 , G05B19/00 , G05D1/223 , G05D1/227 , G05D1/246 , G05D1/249 , G05D1/628 , G05D1/646 , G05D1/689 , G01M3/04 , G01N21/88 , G01N27/82 , G01N29/07 , G05B15/02
CPC classification number: G05D1/0227 , B25J5/007 , B25J9/0009 , B25J9/0015 , B25J9/102 , B25J9/1602 , B25J9/1617 , B25J9/162 , B25J9/1633 , B25J9/1664 , B25J9/1666 , B25J9/1669 , B25J9/1679 , B25J9/1697 , B25J13/088 , B25J19/0029 , B25J19/02 , B60B19/006 , B60G17/015 , B60G17/02 , B60G21/002 , B60G21/007 , B62D37/04 , B62D57/02 , B62D57/024 , G01B7/105 , G01B11/0616 , G01B11/24 , G01B11/303 , G01B17/02 , G01B17/025 , G01B17/06 , G01B17/08 , G01J3/50 , G01K13/00 , G01N29/00 , G01N29/041 , G01N29/043 , G01N29/225 , G01N29/265 , G01N29/28 , G05B19/00 , G05D1/223 , G05D1/227 , G05D1/246 , G05D1/249 , G05D1/628 , G05D1/646 , G05D1/689 , G01M3/04 , G01N21/88 , G01N27/82 , G01N29/04 , G01N29/07 , G01N2291/011 , G01N2291/0231 , G01N2291/0258 , G01N2291/02854 , G01N2291/0289 , G01N2291/044 , G01N2291/051 , G01N2291/106 , G01N2291/2634 , G01N2291/2636 , G05B15/02 , G05B2219/45066
Abstract: A system includes an inspection robot comprising a main body and at least one payload; a plurality of arms, where each of the plurality of arms is pivotally mounted to the at least one payload to rotate around respective ones of a plurality of axes while the inspection robot traverses an inspection surface in a direction of travel, and where at least one of the plurality of axes is in the direction of travel; a plurality of sleds mounted to the plurality of arms; a plurality of inspection sensors coupled to the plurality of sleds such that each sensor is operationally couplable to the inspection surface; and where the plurality of sleds are distributed horizontally at adjustable positions spaced apart from each other across the at least one payload to inspect the inspection surface at a selected horizontal resolution.
-
公开(公告)号:US11848202B2
公开(公告)日:2023-12-19
申请号:US17456967
申请日:2021-11-30
Applicant: Applied Materials, Inc.
Inventor: Zhepeng Cong , Mostafa Baghbanzadeh , Tao Sheng , Enle Choo
CPC classification number: H01L21/02293 , C23C16/4412 , C23C16/455 , C23C16/463 , C23C16/52 , G01B17/02 , G01B17/025
Abstract: The present disclosure generally relates to process chambers for semiconductor processing. In one embodiment, a growth monitor for substrate processing is provided. The growth monitor includes a sensor holder and a crystal disposed in the sensor holder having a front side and a back side. An opening is formed in the sensor holder exposing a front side of the crystal. A gas inlet is disposed through the sensor holder to a plenum formed by the back side of the crystal and the sensor holder. A gas outlet is fluidly coupled to the plenum.
-
公开(公告)号:US20230366857A1
公开(公告)日:2023-11-16
申请号:US18354786
申请日:2023-07-19
Inventor: Jun-Hao Deng , Kuan-Wen Lin , Sheng-Chi Chin , Yu-Ching Lee
IPC: G01N29/44 , H01L21/288 , H01L21/02 , G01B21/16 , G01B17/00 , B08B3/04 , G01B17/02 , H01L21/66 , B08B13/00 , B08B5/02 , H01L21/67
CPC classification number: G01N29/44 , H01L21/288 , H01L21/02623 , G01B21/16 , G01B17/00 , B08B3/04 , H01L21/02041 , G01B17/025 , H01L21/02282 , H01L22/10 , B08B13/00 , B08B5/02 , G01B17/02 , H01L21/67253 , G01N2291/044
Abstract: Methods and systems disclosed herein use acoustic energy to determine a gap between a wafer and an integrated circuit (IC) processing system and/or determine a thickness of a material layer of the wafer during IC processing implemented by the IC processing system. An exemplary method includes emitting acoustic energy through a substrate and a material layer disposed thereover. The substrate is positioned within an IC processing system. The method further includes receiving reflected acoustic energy from a surface of the substrate and a surface of the material layer disposed thereover and converting the reflected acoustic energy into electrical signals. The electrical signals indicate a thickness of the material layer.
-
公开(公告)号:US11788835B2
公开(公告)日:2023-10-17
申请号:US16412706
申请日:2019-05-15
Applicant: Samsung Display Co., Ltd.
Inventor: Seonghyeon Cheon
CPC classification number: G01B17/025 , F25D19/00 , G01B17/02 , G01N29/07 , G01N29/32 , G01N29/326 , G01N2291/0234 , G01N2291/02854 , G01N2291/048 , G01N2291/101 , G01N2291/102
Abstract: An apparatus for measuring thickness includes: a chamber; a sound wave transmitter transmitting a sound wave in the chamber; a sound wave receiver receiving the sound wave transmitted from the sound wave transmitter in the chamber; and a supporter between the sound wave transmitter and the sound wave receiver.
-
5.
公开(公告)号:US20230273158A1
公开(公告)日:2023-08-31
申请号:US18182007
申请日:2023-03-10
Applicant: Xi'an Jiaotong University
Inventor: Tonghai WU , Wenzhuo ZHAO , Pan DOU , Peng ZHENG , Yaping JIA , Yaguo LEI , Junyi CAO
CPC classification number: G01N29/07 , G01B17/025 , G01N29/46 , G01N2291/011 , G01N2291/023 , G01N2291/02854 , G01N2291/101
Abstract: An ultrasonic method and system for simultaneously measuring lubrication film thickness and liner wear of sliding bearings. The method includes: installing an ultrasonic sensor on a bearing bush; sending, by a processor, signals to an ultrasonic pulser-receiver to generate voltage pulses to excite the ultrasonic sensor to generate ultrasonic pulses; collecting an echo signal of an unworn liner-air interface as a reference signal Ba(f); collecting an echo signal of worn liner-lubrication film interface as to-be-measured signal Bow(f); obtaining an amplitude spectrum |Ba(f)| and a phase spectrum ΦBaof Ba(f), an amplitude spectrum |Bow(f)| and a phase spectrum ΦBow(f) of Bow(f) by FFT; calculating an amplitude spectrum |Rw(f)|, and a phase spectrum ΦRw(f) of a reflection coefficient; based on |Rw(f)|, calculating lubrication film thickness d via a resonance model or a spring model; and based on ΦRw(f), calculating liner worn thickness via wear model under different film thicknesses.
-
公开(公告)号:US11680910B2
公开(公告)日:2023-06-20
申请号:US16943205
申请日:2020-07-30
Applicant: SPIRIT AEROSYSTEMS, INC.
Inventor: Mark Davis Haynes
CPC classification number: G01N21/8851 , G01B17/02 , G01B17/025 , G01N21/8422 , G01N21/8806 , G06F3/14 , G06T7/0004 , G01N21/9515 , G01N2021/8427 , G01N2021/8893 , G01N2201/0221 , G06T2207/10028 , G06T2207/30164 , G06T2207/30252
Abstract: A handheld device for making 3D topography measurements of surface discontinuities in high performance structures, such as aerostructures (e.g., aluminum fuselages). Lights illuminate the discontinuity from multiple angles, and a camera captures images of the discontinuity. A thickness sensor generates thickness data regarding a thickness of the base material and the top protective coating. A position sensor generates position data regarding a location of the discontinuity on the structure. A processor generates geometry data regarding a geometry of the discontinuity based on the images, performs an analysis of the geometry, thickness, and position data, and communicates a result of the analysis on a display. A conforming membrane and/or a gel and an opaque lubricant may be applied over and conform to the discontinuity in order to make more uniform a reflectivity difference and a color difference between the discontinuity and an adjacent portion of the structure.
-
公开(公告)号:US11673272B2
公开(公告)日:2023-06-13
申请号:US16813701
申请日:2020-03-09
Applicant: Gecko Robotics, Inc.
Inventor: Mark J. Loosararian , Michael A. Binger , Edward A. Bryner , Edwin H. Cho , Mark Cho , Alexander R. Cuti , Ignacio J. Cordova , Benjamin A. Guise , Dillon R. Jourde , Kevin Y. Low , Logan A. MacKenzie , Joshua D. Moore , Jeffrey J. Mrkonich , William J. Pridgen , Domenic P. Rodriguez , Francesco H. Trogu , Alex C. Watt , Yizhu Gu , Ian Miller , Todd Joslin , Katherine Virginia Denner , Michael Stephen Auda , Samuel Theodore Westenberg
IPC: B25J5/00 , B25J9/16 , B25J9/00 , B25J9/10 , B25J13/08 , B25J19/00 , B25J19/02 , G01B11/06 , G01B11/24 , G01B11/30 , G01B17/02 , G01B17/06 , G01B17/08 , G01J3/50 , G01K13/00 , G05D1/00 , G05D1/02 , B60G17/015 , B60G17/02 , B60G21/00 , B62D37/04 , B62D57/024 , G01M3/04 , G01N21/88 , G01N27/82 , G01N29/04 , G05B15/02
CPC classification number: B25J9/1669 , B25J5/007 , B25J9/0009 , B25J9/0015 , B25J9/102 , B25J9/1602 , B25J9/162 , B25J9/1617 , B25J9/1633 , B25J9/1664 , B25J9/1666 , B25J9/1679 , B25J9/1697 , B25J13/088 , B25J19/0029 , B25J19/02 , B60G17/015 , B60G17/02 , B60G21/002 , B60G21/007 , B62D37/04 , B62D57/024 , G01B11/0616 , G01B11/24 , G01B11/303 , G01B17/025 , G01B17/06 , G01B17/08 , G01J3/50 , G01K13/00 , G05D1/0016 , G05D1/0094 , G05D1/0272 , G05D1/0274 , G01M3/04 , G01N21/88 , G01N27/82 , G01N29/04 , G01N2291/0289 , G05B15/02 , G05D2201/0207
Abstract: An inspection robot incudes a robot body, at least two sensors, a drive module, a stability assist device and an actuator. The at least two sensors are positioned to interrogate an inspection surface and are communicatively coupled to the robot body. The drive module includes at least two wheels that engage the inspection surface. The drive module is coupled to the robot body. The stability assist device is coupled to at least one of the robot body or the drive module. The actuator is coupled to the stability assist device at a first end, and coupled to one of the drive module or the robot body at a second end. The actuator is structured to selectively move the stability assist device between a first position and a second position. The first position includes a stored position. The second position includes a deployed position.
-
公开(公告)号:US20180073975A1
公开(公告)日:2018-03-15
申请号:US15342791
申请日:2016-11-03
Applicant: Saudi Arabian Oil Company
Inventor: Fadl Abdellatif , Hamad Al-Saiari , Ali Outa , Ayman Amer , Sahejad Patel , Ameen Obedan , Hassane Trigui
CPC classification number: G01N17/02 , C23F13/04 , C23F2213/31 , G01B17/02 , G01B17/025 , G01N29/225 , G01N29/226 , G01N29/245 , G01N29/265 , G01N2291/0231 , G01N2291/02854 , G01N2291/101 , G01R19/0092
Abstract: This application discloses integrated probes and probe systems, which can be attached to the robotic arms of a remotely operated vehicle to perform both cathodic protection (CP) voltage measurements and ultrasonic testing (UT) thickness measurements at an underwater surface. In some embodiments, the integrated probe system couples an inner and outer gimbal together such that one or more electrically conductive legs pass from the outer gimbal through the inner gimbal. These legs are arranged about an ultrasonic sensor which extends from the front surface of the inner gimbal. When the integrated probe contacts the underwater surface, both the ultrasonic sensor and at least one leg contact the surface, thereby providing substantially simultaneous CP and UT measurements.
-
公开(公告)号:US20170322184A1
公开(公告)日:2017-11-09
申请号:US15147426
申请日:2016-05-05
Applicant: The Boeing Company
Inventor: Jill Paisley Bingham
CPC classification number: G01N29/043 , G01B17/025 , G01N29/0645 , G01N29/12 , G01N29/2418 , G01N29/42 , G01N29/46 , G01N2291/0231 , G01N2291/02854 , G01N2291/0289 , G01N2291/2694
Abstract: A method of detecting near surface inconsistencies in a structure is presented. A pulsed laser beam is directed towards the structure. Wide-band ultrasonic signals are formed in the structure when radiation of the pulsed laser beam is absorbed by the structure. The wide-band ultrasonic signals are detected to form data. The data is processed to identify a frequency associated with the near surface inconsistency.
-
公开(公告)号:US09593939B1
公开(公告)日:2017-03-14
申请号:US14584951
申请日:2014-12-29
Applicant: Flextronics AP, LLC
Inventor: Hongqiang Xie , An Qi Zhao , Jiyang Zhang , Zhen Feng , David Geiger
CPC classification number: G01B11/0625 , G01B11/06 , G01B11/0608 , G01B11/0691 , G01B17/025 , H05K1/00 , H05K1/0266
Abstract: A glue thickness inspection system automates a thickness measurement functionality for determining the thickness of both non-transparent and transparent materials including, but not limited to, glue, gel, solder and epoxy. The glue thickness inspection system includes a laser detector, a movable platform for positioning a unit under test, and a controller for controlling movement of the platform, angle of the laser detector, and calculation of the transparent material thickness. The laser detector includes a laser for emitting a laser light onto the unit under test and a sensor for receiving corresponding reflected light. The sensed data is used by the controller to determine the transparent material thickness.
Abstract translation: 胶水厚度检查系统自动化厚度测量功能,用于确定不透明和透明材料的厚度,包括但不限于胶,凝胶,焊料和环氧树脂。 胶水厚度检查系统包括激光检测器,用于定位被测单元的可移动平台,以及用于控制平台运动的控制器,激光检测器的角度以及透明材料厚度的计算。 激光检测器包括用于将激光发射到被测单元上的激光器和用于接收相应的反射光的传感器。 感测数据由控制器用于确定透明材料厚度。
-
-
-
-
-
-
-
-
-