Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
A method is provided for minimizing cross-technology interference with data transmissions from a wireless device in a shared spectrum. The wireless device obtains data to be wirelessly transmitted in a transmission burst in a first radio access technology (RAT) format over a shared spectrum. The wireless device generates a preamble comprising assistance information related to the transmission burst. The preamble comprises a first preamble portion in the first RAT format and a second preamble portion in a second RAT format. The wireless device transmits the preamble followed by the transmission burst.
Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.
Abstract:
An example method is provided in one example embodiment and includes receiving at least one performance metric from each of a plurality of cells, the at least performance metric associated with a downlink transmission from the cell to one or more user equipment devices associated with the cell. The method further includes determining a fraction of resources for allocation within a fractional frequency reuse portion of a frequency spectrum based upon the received at least one performance metric, and determining a fraction of the resources for allocation within a reuse one portion of the frequency spectrum based upon the determined fraction of resources for allocation within the fractional frequency reuse portion of the frequency spectrum.
Abstract:
Modifications to frame/subframe structure are presented herein so that a wireless device can transmit its data within a fraction of a subframe. The device obtains data to be transmitted in an unlicensed spectrum and determines whether an entire subframe is required to completely communicate the data. If the data is small enough to not require the entire subframe, then the device generates a burst transmission to minimize the time period of the subframe used to communicate the data. The device transmits the burst transmission and a parameter indicating the duration of the burst transmission.
Abstract:
A method is provided in one example embodiment and may include determining one or more uplink inter cell interference coordination (ICIC) parameters for a plurality of cells based, at least in part, on feedback information associated with the plurality of cells; exchanging interference information between neighboring cells; and scheduling uplink transmissions for user equipment served by the neighboring cells based, at least in part, on the uplink ICIC parameters and the interference information exchanged between neighboring cells. A method is provided in another example embodiment and may include determining a ratio relating a first portion of a frequency spectrum for assigning fractional frequency re-use resources to a second portion of the frequency spectrum for assigning re-use one resources; and updating the ratio relating the first portion and the second portion of the frequency spectrum to optimize throughput rates for the plurality of user equipment across the plurality of cells.
Abstract:
The present disclosure provides a fine-grained link adaptation mechanism that allows for link adaptation at a resource block granularity. To this end, the fine-grained link adaptation mechanism can determine the effective signal-to-interference-plus-noise ratio for individual user equipment in a particular cell at the resource block granularity. This way, the transmitter can use the effective signal-to-interference-plus-noise ratio to adapt the modulation and coding scheme at the resource block granularity. The fine-grained link adaptation mechanism can be introduced to a long term evolution (LTE) network without substantial redesign of the LTE network.
Abstract:
A method is provided in one example embodiment and may include calculating, by one or more of a plurality of small cell radios, one or more sets of candidate power control parameters using a first interference constraint for uplink user equipment (UE) transmissions for UE served by the one or more of the plurality of small cell radios; determining, at a central management entity, whether an average of a sum of an expected interference for UE associated with the plurality of small cell radios violates a second interference constraint for any of the one or more sets of candidate power control parameters; and generating one or more messages for each of the plurality of small cell radios identifying one or more particular sets of power control parameters that provide for meeting the second interference constraint.