Abstract:
A combustion system includes a perforated flame holder configured to hold a main combustion reaction substantially between input and output faces thereof. A main fuel nozzle is positioned to emit a main fuel stream toward the input face. An igniter assembly is configured to ignite a preheat flame supported by the main fuel stream between the main fuel nozzle and the perforated flame holder, and to selectably control a degree of ignition of the fuel stream by the preheat flame. During a start-up of the combustion system, the perforated flame holder is preheated by the preheat flame. When the perforated flame holder reaches a start-up temperature, the preheat flame is shifted from fully igniting to partially igniting the fuel stream, allowing fuel and oxidant to reach the perforated flame holder. A flame is ignited in the perforated flame holder while the preheat flame burns. The preheat flame is then released.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A flame holder system includes a support structure configured to support a plurality of burner tiles within a furnace volume. The support structure includes a frame supporting a support lattice. A number of burner tiles are arranged in an array on the support lattice. The support structure is configured to be assemblable without tools inside the furnace volume, using components that are sized to fit through an access port in a wall of the furnace.
Abstract:
A burner includes a porous flame holder configured to support a combustion reaction to achieve a very low output of oxides of nitrogen (NOx).
Abstract:
A burner system that employs a perforated flame holder and is configured to combust a powdered solid fuel includes a structure configured to protect the perforated flame holder from erosion caused by particles of the solid fuel.
Abstract:
A fire tube boiler includes a perforated flame holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A combustion system includes a perforated flame holder, a camera, and a control circuit. The perforated flame holder sustains a combustion reaction within the perforated flame holder. The image capture device takes a plurality of images of the combustion reaction. The control circuit produces from the images an averaged image and adjusts the combustion reaction based on the adjusted image.
Abstract:
A method of operation of a burner system includes introducing a fuel stream into a perforated flame holder, combusting the fuel stream, with a majority of the combustion occurring between an input face and an output face of the flame holder, and producing a heat output from the combustion of at least 1.5 kBTU/H/in2.
Abstract:
A combustion system includes a combustion fluid charge source and a start-up flame holder configured to attract the charge and hold a flame when the combustion system is cool and allow the flame to lift when the combustion system is warmed up.