Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
Abstract:
Glasses comprising SiO2, Al2O3, and P2O5 that are capable of chemical strengthened by ion exchange and having high damage resistance. These phosphate-containing glasses have a structure in which silica (SiO2) is replaced by aluminum phosphate (AlPO4) and/or boron phosphate (BPO4).
Abstract translation:包含SiO 2,Al 2 O 3和P 2 O 5的玻璃,其能够通过离子交换化学强化并具有高耐损伤性。 这些含磷酸盐的玻璃具有其中二氧化硅(SiO 2)被磷酸铝(AlPO 4)和/或磷酸硼(BPO 4)代替的结构。
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.
Abstract:
A glass article including at least about 40 mol % SiO2 and, optionally, a colorant imparting a preselected color is disclosed. In general, the glass includes, in mol %, from about 40-70 SiO2, 0-25 Al2O3, 0-10 B2O3; 5-35 Na2O, 0-2.5 K2O, 0-8.5 MgO, 0-2 ZnO, 0-10% P2O5 and 0-1.5 CaO. As a result of ion exchange, the glass includes a compressive stress (σs) at at least one surface and, optionally, a color. In one method, communicating a colored glass with an ion exchange bath imparts σs while in another; communicating imparts σs and a preselected color. In the former, a colorant is part of the glass batch while in the latter; it is part of the bath. In each, the colorant includes one or more metal containing dopants formulated to impart to a preselected color. Examples of one or more metal containing dopants include one or more transition and/or rare earth metals.
Abstract:
Computer-implemented methods and apparatus are provided for predicting/estimating (i) a non-equilibrium viscosity for at least one given time point in a given temperature profile for a given glass composition, (ii) at least one temperature profile that will provide a given non-equilibrium viscosity for a given glass composition, or (iii) at least one glass composition that will provide a given non-equilibrium viscosity for a given time point in a given temperature profile. The methods and apparatus can be used to predict/estimate stress relaxation in a glass article during forming as well as compaction, stress relaxation, and/or thermal sag or thermal creep of a glass article when the article is subjected to one or more post-forming thermal treatments.
Abstract:
A glass article including at least about 40 mol % SiO2 and, optionally, a colorant imparting a preselected color is disclosed. In general, the glass includes, in mol %, from about 40-70 SiO2, 0-25 Al2O3, 0-10 B2O3; 5-35 Na2O, 0-2.5 K2O, 0-8.5 MgO, 0-2 ZnO, 0-10% P2O5 and 0-1.5 CaO. As a result of ion exchange, the glass includes a compressive stress (σs) at at least one surface and, optionally, a color. In one method, communicating a colored glass with an ion exchange bath imparts σs while in another; communicating imparts σs and a preselected color. In the former, a colorant is part of the glass batch while in the latter; it is part of the bath. In each, the colorant includes one or more metal containing dopants formulated to impart to a preselected color. Examples of one or more metal containing dopants include one or more transition and/or rare earth metals.
Abstract:
Glasses comprising SiO2, Al2O3, and P2O5 that are capable of chemical strengthened by ion exchange and having high damage resistance. These phosphate-containing glasses have a structure in which silica (SiO2) is replaced by aluminum phosphate (AlPO4) and/or boron phosphate (BPO4).
Abstract:
Glasses comprising SiO2, Al2O3, and P2O5 that are capable of chemical strengthened by ion exchange and having high damage resistance. These phosphate-containing glasses have a structure in which silica (SiO2) is replaced by aluminum phosphate (AlPO4) and/or boron phosphate (BPO4).
Abstract:
Described herein are alkali-free, boroalumino silicate glasses exhibiting desirable physical and chemical properties for use as substrates in flat panel display devices, such as, active matrix liquid crystal displays (AMLCDs) and active matrix organic light emitting diode displays (AMOLEDs). In accordance with certain of its aspects, the glasses possess excellent compaction and stress relaxation properties.