Abstract:
Equipment and manufacturing processes allow for strengthened glass or glass ceramic articles having unique stress profiles, such as high negative tensile stresses and steep tensile stress curves with respect to depth, in strengthened glass or glass ceramic articles that are thin and/or have large-area structures for a given degree of thermal temping.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product as well as process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A thermally treated metal sheet or article as well as processes and systems for making the thermally treated sheet or article is provided. The process comprises heating and/or cooling the metal sheet by non contact thermal conduction for sufficiently long to provide a desired microstructure and mechanical properties. The process results in thermally treated metal sheets.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17·t or greater. In one or more embodiments, the first surface is flat to 100 μm total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
Abstract:
Embodiments of thermally and chemically strengthened glass-based articles are disclosed. In one or more embodiments, the glass-based articles may include a first surface and a second surface opposing the first surface defining a thickness (t), a first CS region comprising a concentration of a metal oxide that is both non-zero and varies along a portion of the thickness, and a second CS region being substantially free of the metal oxide of the first CS region, the second CS region extending from the first surface to a depth of compression of about 0.17·t or greater. In one or more embodiments, the first surface is flat to 100 μm total indicator run-out (TIR) along any 50 mm or less profile of the first surface. Methods of strengthening glass sheets are also disclosed, along with consumer electronic products, laminates and vehicles including the same are also disclosed.
Abstract:
A strengthened glass sheet product as well as process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product as well as process and an apparatus for making the product. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.
Abstract:
A strengthened glass sheet product along with a process and an apparatus for strengthening a glass sheet are provided. The process comprises cooling the glass sheet by non-contact thermal conduction for sufficiently long to fix a surface compression and central tension of the sheet. The process results in thermally strengthened glass sheets having improved breakage properties.