Abstract:
A vacuum insulated glass unit includes a first and a second glass pane and a pane bonding layer. The first and second glass panes each include a vacuum chamber side opposite an outer side. The vacuum chamber side of the first glass pane includes an etched interior surface, a glass pane periphery having a periphery surface, and a plurality of glass spacers each having an end surface. The pane bonding layer is positioned between and engaged with the periphery surface of the glass pane periphery of the first glass pane and the second glass pane and couples the first glass pane to the second glass pane. Each end surface of the plurality of glass spacers and the periphery surface of the glass pane periphery are offset from the etched interior surface such that a vacuum chamber is disposed between the first and the second glass panes.
Abstract:
A lighting device is provided comprising a chip-on-board (COB) light emitting diode (LED) light source, a light source encapsulant, a quantum dot distributed color conversion medium, and a quantum dot glass containment plate. The COB LED light source comprises at least one LED and defines a light source encapsulant cavity in which the light source encapsulant is distributed over the LED. The quantum dot glass containment plate is positioned over the light source encapsulant cavity and contains a quantum dot distributed color conversion medium. The distributed color conversion medium comprises a quantum dot structure and is distributed in two dimensions over an emission field of the lighting device within the quantum dot glass containment plate.
Abstract:
Methods and apparatus provide for a touch sensitive display, in which a transparent layer is disposed over a display layer; light is directed to propagate into and/or through the transparent layer; scattered light is measured in response to an object touching a surface the transparent layer and disturbing the propagation of the light therethrough; and one or more positions at which the object touches the transparent layer are computed based on signals obtained by the step of measuring the scattered light.