摘要:
An embodiment in accordance with the present invention provides a device and method for a quantitatively calibrated computed tomography scanner. The device includes a gentry configured for receiving a patient or part of a patient. The gentry includes an X-ray source and a detector positioned opposite said X-ray source, such that said detector receives the X-rays emitted from the X-ray source. Calibration phantoms are integrated with the gentry and/or a device within the scanner so as to allow for calibration in quantitative CT measurements of Hounsfield units and/or bone mineral density.
摘要:
A method, computer system, and a computer-readable medium for registering one or more structures to a desired orientation for planning and guidance for surgery is provided. The method includes in a preoperative stage, obtaining one or more 3D models of one or more structures from one or more CT images using an image processing segmentation technique or a manual segmentation technique; in the preoperative stage, registering the one or more structures to a template that is adapted to an alternating registration for a patient-specific shape and pose for a desired reduction and corresponding reduction transformations; in an intraoperative stage, mapping the one or more structures to one or more radiographs via a 3D-2D registration that iteratively optimizes a similarity metric between acquired and simulated radiographs; and in the intraoperative stage, providing an output that is representative of a radiograph or a 3D tomographic representation to provide guidance to a user.
摘要:
Techniques for computed tomography (CT) image reconstruction are presented. The techniques can include acquiring, by a detector grid of a computed tomography system, detector signals for a location within an object of interest representing a voxel, where each detector signal of a plurality of the detector signals is obtained from an x-ray passing through the location at a different viewing angle; reconstructing a three-dimensional representation of at least the object of interest, the three-dimensional representation comprising the voxel, where the reconstructing comprises computationally perturbing a location of each detector signal of the plurality of detector signals within the detector grid, where the computationally perturbing corresponds to randomly perturbing a location of the x-ray within the voxel; and outputting the three-dimensional representation.
摘要:
A system and method for metal artifact avoidance in 3D x-ray imaging is provided. The method includes determining a 3D location of metal in an object or volume of interest to be scanned; estimating a source-detector orbit that will reduce the severity of metal artifacts; moving an imaging system to locations consistent with the source-detector orbit that was estimated; and scanning the object according to the source-detector orbit.
摘要:
An electromagnetic tracking system including a patient support element and an electromagnetic field generator. The patient support element is superposed relative to the electromagnetic field generator, and the electromagnetic field generator is selectively moveable relative to the patient support element.
摘要:
An embodiment in accordance with the present invention provides a technique for localizing structures of interest in projection images (e.g., x-ray projection radiographs or fluoroscopy) based on structures defined in a preoperative 3D image (e.g., MR or CT). Applications include, but are not limited to, spinal interventions. The present invention achieves 3D-2D image registration (and particularly allowing use with a preoperative MR image) by segmenting the structures of interest in the preoperative 3D image and generating a simulated projection of the segmented structures to be aligned with the 2D projection image. Other applications include various clinical scenarios involving 3D-2D image registration, such as image-guided cranial neurosurgery, orthopedic surgery, biopsy, and radiation therapy.
摘要:
An embodiment in accordance with the present invention provides a method for applying task-based performance predictors (measures of noise, spatial resolution, and detectability index) based on numerical observer models and approximations to the local noise and spatial resolution properties of the CBCT reconstruction process (e.g., penalized-likelihood iterative reconstruction). These predictions are then used to identify projections views (i.e., points that will constitute the scan trajectory) that maximize task performance, beginning with the projection view that maximizes detectability, proceeding to the next-best view, and continuing in an (arbitrarily constrained) orbit that can be physically realized on advanced robotic C-arm platforms. The performance of CBCT reconstructions arising from a task-based trajectory is superior to simple and complex orbits by virtue of improved spatial resolution and noise characteristics (relative to the specified imaging task) associated with the projection views constituting the customized scan orbit.
摘要:
An embodiment in accordance with the present invention provides a method for 3D-2D registration (for example, registration of a 3D CT image to a 2D radiograph) that permits deformable motion between structures defined in the 3D image based on a series of locally rigid transformations. This invention utilizes predefined annotations in 3D images (e.g., the location of anatomical features of interest) to perform multiple locally rigid registrations that yield improved accuracy in aligning structures that have undergone deformation between the acquisition of the 3D and 2D images (e.g., a preoperative CT compared to an intraoperative radiograph). The 3D image is divided into subregions that are masked according to the annotations, and the registration is computed simultaneously for each divided region by incorporating a volumetric masking method within the 3D-2D registration process.
摘要:
A method for processing an image of a series of images includes receiving first data representing a first previously reconstructed image and receiving second data representing a second image. A second image is reconstructed in accordance with the first data, the second data and a noise model. The noise model is a likelihood estimation. The second image is reconstructed in accordance with a penalty function. The penalty function is a roughness penalty function. The penalty function is updated by iteratively adjusting an image volume estimate. The penalty function is updated by iteratively adjusting a registration term. The penalty function is a prior image penalty function and the prior image penalty function and a registration term are jointly optimized. The penalty function is determined in accordance with a noise model. The function is a p-norm penalty function.
摘要:
Techniques for computed tomography (CT) image reconstruction are presented. The techniques can include acquiring, by a detector grid of a computed tomography system, detector signals for a location within an object of interest representing a voxel, where each detector signal of a plurality of the detector signals is obtained from an x-ray passing through the location at a different viewing angle; reconstructing a three-dimensional representation of at least the object of interest, the three-dimensional representation comprising the voxel, where the reconstructing comprises computationally perturbing a location of each detector signal of the plurality of detector signals within the detector grid, where the computationally perturbing corresponds to randomly perturbing a location of the x-ray within the voxel; and outputting the three-dimensional representation.